SNUG-2014
Silicon Valley, CA
Voted Best Technical
Paper - 3rd Place

A
-)
—Sunburst Design—

World Class Verilog, SystemVerilog & OVM/UVM Training

UVM Transactions - Definitions, Methods and Usage

Clifford E. Cummings

Sunburst Design, Inc.
cliffc@sunburst-design.com
www.sunburst-design.com

ABSTRACT

Fundamental questions most novice UVM users have include: Why uses classes instead of structs
to define transactions for verification environments? What are advantages of using classes to
represent transactions in a verification environment? What methods should be defined in a

UVM transaction class and why are there both field macros and do_methods() for creating the
transaction methods?

This paper will detail advantages related to using class-based transactions and answer questions
about why there is so much confusion surrounding transaction method definitions and usage.

This paper will also detail transaction method usage and field definition guidelines and
tradeoffs.

SNUG 2014 1 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Table of Contents

| 15 (06 L1 (o103 o DRSSPSR 7
2. ClASSES ~VS= STIUCESeeutieeiiieiie ettt ettt ettt ettt et sat e et esht e et esat e st e e sbteeabeesbbeeabeenbeeenbeenaee 7
3. TransSaction ClASS LYPES ..ccuieruiiiiieiieetie ettt ettt et ettt e st e et e et e e b e et e e beeenee 8
3.1. Class parameter types: Uvim_SequUence item & INtcceccveerveecirerieerieeneeereeneeeeveennns 8
3.2, UVM TanSACHIONSecccuvieeiiieeiiiieeiieieeitteeeieeesteeesveeessseeassseeessseeassseesssseesssseessseesssseesssees 8
3.3. Unnecessary Output Randomization............cceeriieiierieeiiienieeiiesie e eeeeeiee e 10
4. UVM transactiOn LYPES ..cuveeeeueeeriueeerieeesieeeseeeessseessseeesssaeessesessseeessseeassssesssseessssesssssessssessnns 10
4.1. Standard class fOrmMatting...........cccueevieriiieiiieiie ettt ens 10
5. Transaction class MEthOAScoiiiiiiiiiiii e 11
6. Introduction to standard transaction Methodsccccueeriiiiiiiiiiiiieieceeeee e 12
6.1. Factory registration of tranSaCtionSccveeecuieeriiieeriieeriieerieeeseeeesereeeeeeeeaeeesseeenens 12
6.2. uvm_object utils() -vs- 'uvm_object_utils_begin()/_endccceecuieriiiiiiniiinienis 12
6.3. _ m uvm_field automation() method............ccoceiriiiiiiiiiiiiniiiieeeeee e 15
6.4. Proposed Future UVM Macro Change............cocceeiiieiiiiiiiiieiiiesieeeeie et 15
7. Inherited standard transaction Methodsc.ooieiiiiiiiiiiiiiiie e 16
7.1. Should I override the standard transaction methods?............cccceeriiiiiniiiiiiniiiiees 18
7.2. Inherited transaction utility methods...........ccceeiiiiiiiiiiiiie e 20
7.3, create() MEthOd.........ooioiiieiee e e e e 20
7.4, clone() MELhOM.......c.ueiiiieeiie et e et e e e e e eebaeeeans 21
7.5, CONVEIT2STIINZ() veeureeurierueeetieeiieeteeetteetteeeteetee sttt eteesaeeenbeesateesseesaseenseesabeenseesnseenseesnseans 21
7.6. Plan for extended convert2string() methodscoccuveviiriiieiiiniiiieceee e 22
7.7. Transaction printAll() method??ccooooiiiiiiiiiee e 23
8. DO METNOAS() +eeevveenrieeiiieiieeie ettt ettt ettt et e et e et e e abe e bt e et e e taeenbeenaeeenes 24
8.1. Virtual method rules and virtual do_method() prototypescccceevveeneeneernieenieeieene 25
8.2. base-class casting to extended class handleccccooviiiiiiiiiniiii 25
8.3. rhs & rhs do method() argUMENLS............cccuieuieiieiiiieiie ettt 26
8.4. uvm_object default do methods()......cceevuieeuieiiiiiiiiiecieeece e 27
8.5, COPY() ANA O COPY() weeuveerreeiieniiieiie ettt ettt ettt ettt sat e et e st e et e eaeeenneeeeee 27
8.6. Using the copy() method: to tr.copy(from tr)........ccceeviieiiieiiiiiieiieeiece e 29
8.7. print(), sprint() and do Print()........cceeecueerieriiieiieiieeieeeie et ee 30
8.8. record() and do TECOTA() ..vveevieriieiieeie ettt et et 32
8.9. pack() and dO PACK()...ccveerrieeiieiiieiteeie ettt 32
8.10. unpack() and do UNPACK()cccueeruieriiiiiieiiieiie ettt 32
8.11. compare() and dO_ COMPATE()....eerurerureeriieiiieniieeieeiee sttt ee ettt st et e e eeeesaeeeaee e 33
SNUG 2014 2 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

8.12. uvm_comparer policy class methods..........cccerieiiiiiiiiiiiiiiie e 35

8.13. do_methods & super.do methods()........cccveeuierieiiiiiniieiieeie e 37
8.14. Templates with do MEthodS()ccccvvieiuiiiiiiieiiiee e 38
0. FICIA MACTOS .ttt ettt ettt ettt sb bttt e he e bt et et be s 40
L2 B O3 1S3 [B85 F: Tor Y0 I 7 1T OSSR 42
0.2, Field MAacto f1agS.....ccuuiiiiiiiiiiieeie ettt ettt 44
9.3. Combining Field Macros with do methods()cceeevureriieriieiiieniieieeieeeeee e 50
10, BeNCRMATKS. ..ottt st et b et e ea 51
10.1. Benchmarking methodology.........cccoeiieiiiiiiiiiiiicieee e 51
10.2. Benchmarking do methods() with nonrand-outputs and rand-outputs...................... 53
10.3. Benchmarking field macros with nonrand-outputs and rand-outputs 54
11, Summary & CONCIUSIONSccueiiiiiiiiieiieitieete ettt ete et e e teebeeeaeebeesaaeeseessseesseessaaens 56
12, AcCKNOWIEAZEMENTSoouiieiiiiiie ettt ettt e aeeeae e b e 57
I3, REIETEICES ... ittt ettt et et et s e e bt e st beenareens 57
14. AUTHOR & CONTACT INFORMATIONoociiiieiieieieie ettt 58
IS5, APPENAIX A ..ottt ettt et e stt e et e st e et e e at e et e e ta e et e eteeenbeetaeenbeebeeenbeenaeenaaens 59
15.1. UVM classes parameterized to uvim_SequUENCe Itcoceevuervereenuereenieenieeienieenne 59
15.2. UVM classes parameterized t0 iNt.........c.cecveeeuierieeiiieniieeiienie et eiee e eseaesneens 59
16, APPENAIX B oot et e b e e e abe e eaaeeeraee e 62
16.1. Benchmark files to test simulation efficiencycccoccveveierienciiinieiiieieeeeeeee 62
16.2. Benchmark ves benchmark times file.........oocoevviiiiiiiiiiiiiiieiiccee e 65
16.3. Benchmark test] file with repeat-100p........ccooueeriiiiiiiiiiie e, 66
16.4. translf - randomized outputs - uses field macros - no UVM_ALL ON flags........... 72
Table of Tables
Table 1 - uvm_comparer MEthOAScccviieiiiieiiieceece e e e 37
Table 2 - Field macros defined in UVMcocooiiiiiiiiniiiiieeceeeeeee et 43
Table 3 - UVM field macro flag parameters defined in base/uvm_object globals.svh 45
Table 4 - UVM field macro onehot flag settings in base/uvm_object globals.svh...................... 46
SNUG 2014 3 UVM Transactions - Definitions,

Rev 1.1 Methods and Usage

Table of Figures

Figure 1 - TransSaction PASSINE.........eecueeruieeiuienieetieeteeteesiteeteesiteeteessteeseesatesbeessseenseesseeenseenseennne 9
Figure 2 - Standard class formatting............ceeoeeriieiieniieiiieeie ettt seae e 10
Figure 3 - Transaction formatting w/ field macroscceeiieiieiiiiiiiniie e, 11
Figure 4 - Transaction formatting w/ do_ methods().........cccverieerieriiieiieiiieiiecie e 11
Figure 5 - Actual "define uvm_object utils macro definitionccceeeiieiiieiiiiiinniiiieeeee, 13
Figure 6 - Actual "define uvm_object utils begin macro definition............c.cccceeeevverirenneenneenen. 13
Figure 7 - Actual "define uvm_object utils_end macro definition............coeceeveeriieniiineenieennen. 13

Figure 8 - Illegal Syntax - Calling both ‘uvm_object utils() and ‘'uvm_field utils begin() 14

Figure 9 - Proposed UVM Change - new definition for ‘'uvm_object utils(T).....cccccecvevueruennene. 16
Figure 10 - Important, inherited utility non-virtual methods...........c.cccceeviieniieiieniieiceieeieee, 16
Figure 11 - Standard transaction methods - two ways to create themcoceecevveniininicnnne. 17
Figure 12 - Important utility non-virtual method prototypes.........cccceeeeeriieriienieenienieeieeeveenee. 17
Figure 13 - UVM 1.1d - src/base/uvm_object.svh - compare() method implementation............. 19
Figure 14 - Important, inherited utility virtual methodsccceeviieriiiiieniiieiiee e, 20
Figure 15 - Important utility virtual method prototypescoeoievieriieniieiierie e, 20
Figure 16 - uvm_object create() method - manual definition..........c.ccceeveiierieeciieniieeciieieeieeee, 21
Figure 17 - uvm_object source code for convert2string()ceeeeereeriieerieeniienieeriee e eiee e 21

Figure 18 - Extended transaction function calls to super.output2string() & super.input2string() 23
Figure 19 - Creating the standard transaction methods by overriding the built-in do_methods() 24
Figure 20 - Inherited do_method() hooks to define standard transaction methods....................... 25
Figure 21 - Overriding the do_copy() and do_compare() methods with uvm_object inputs 26
Figure 22 - Common do_copy() coding example with trans1 declared using rhs _handle name. 27

Figure 23 - Preferred do_copy() coding example with trans1 declared using tr handle name..... 27

Figure 24 - Transaction copy() and compare() methods - common usage block diagram 28
Figure 25 - Example sb_predictor.sv - collecting transactions using the tr.copy() method 29
Figure 26 - do_copy() inherited virtual method prototype and source code............c.ccvevurreerennne. 29
Figure 27 - trans1 example with do_copy() and do_compare() methods defined 30
Figure 28 - NULL do_print() Method.........c.ceovuieiiieiieiieiiieiie ettt 31
Figure 29 - do_print() inherited virtual method prototype and source code...........cccecuvevueereennnee. 31
Figure 30 - do_record() inherited virtual method prototype and source code...........coevveennennne. 32
Figure 31 - do_pack() inherited virtual method prototype and source code...........cccecuveruvreuennnee. 32
SNUG 2014 4 UVM Transactions - Definitions,

Rev 1.1 Methods and Usage

Figure 32 - do_unpack() inherited virtual method prototype and source code...........c.cceeueenneee. 33
Figure 33 - do_compare() inherited virtual method prototype and source code.............cccuene.. 33

Figure 34 - Example sb_comparator.sv - comparing transactions using out_tr.compare(exp_tr) 35

Figure 35 - do_compare() method that does not use the uvm_comparerc.cccceeevreeneenevennen. 36
Figure 36 - do_compare() method that DOES use the uvm_comparer methods...........c..c..c....... 36
Figure 37 - Non-comparer output -vs- uvm_comparer reported mesSagesccveevveerruveerrnveenns 37
Figure 38 - Example trans1.sv template file with do_copy() & do_compare() templates............ 39
Figure 39 - Creating the standard transaction methods by using the UVM field macros............. 40
Figure 40 - Creating the standard transaction methods by using the field macros....................... 41
Figure 41 - ERROR - combining variables into a single field macro - VCS error shown 42
Figure 42 - ERROR - concatenating variables into a single field macro - VCS error shown 42
Figure 43- UVM field macro onehot flag settings diagram.............cceeveeevieviienciienieenieeieeeeeenenn 46
Figure 44 - Field macro flags implicitly enable UVM_ALL ON.......cccooiviiiniininiinicccienne 47
Figure 45 - trans2 legally defined using multiple +-separated field macro flags 48
Figure 46 - test2: copies and compares trans2 ObJECTS.......c.eerueeeruierieriiienieeiieneeeiee e eeeesiee e 48
Figure 47 - test2 simulation output - b-variable comparison fails as expectedc.ccccveeveenenn. 49
Figure 48 - UVM_NOCOPY flag accidentally |-specified twice - nocopy remains active.......... 49
Figure 49 - UVM_NOCOPY flag accidentally +-specified twice - removing the nocopy setting49
Figure 50 - trans8b base with field macros extended in trans8 with do_methods() 50
Figure 51 - Benchmark testl.sv run_phase() with randomize(), copy() and compare() loop....... 52
Figure 52 - Common benchmark transl code.........cccoovveriiiiniiniiiiniiniieccceeeeee 52
Figure 53 - Benchmark script to run the first transactions five times..........ccccoeeveeveerciieneenveennen. 53
Figure 54 - First benchmark trans1 with non-rand outputs and do_methods()........cc.cccceueereennnee. 54
Figure 55 - Third benchmark trans1 with non-rand outputs and field macroscccccecuenneene. 55
Figure 56 - UVM classes parameterized to the uvm_sequence item type.........cccceeeeeeneeuennnene 59
Figure 57 - UVM classes parameterized to the int tyPe........occveeviieriieiieniieniieeieeiie e 61
Figure 58 - vcs_benchmark times report file for a loop CNT=10,000,000ccccveercrrrerrernne 65
SNUG 2014 5 UVM Transactions - Definitions,

Rev 1.1 Methods and Usage

Table of Examples

Example 1 - File: th PKELIA.SV c.eiiiiiiiieiee e st 62
Example 2 - File: TUNTA.f ..ottt et s e e eaneeneeas 62
Example 3 - File: th PKEID.SViiiiiiiiiee et 62
Example 4 - File: TUNID.L....cooiiiiiee ettt s eneees 62
Example 5 - File: th PKEIC.SV c.uuiiiiiiiieeee et et 62
Example 6 - File: TUNLC.E . .ooiiiiiiiieece et ettt et enaeennees 62
Example 7 - File: th pKEIA SV ...uiiiiiiiiee et 62
Example 8 - File: tunTd.f.....ccoooiiiiiiiece et et 62
Example 9 - File: th PREIE.SV c..uiiiiiiiieiee ettt et 62
Example 10 - File: TUNT@.f..c.iiiiiiiieiece ettt ettt s e s e ennees 62
Example 11 - File: th pREIESV ..o e 62
Example 12 - File: TUnTE L. oot et enae e 62
Example 13 - File: dOTt1a.VCS .eouiiiiiiiieiiieie ettt ettt 63
Example 14- File: dOTtID.VES ..cocuiiiiiiiiiieiieciecie ettt et e e s e sabaeseenneas 63
Example 15- File: dOTT1C.VES ..eiuiiiiiiiiieiieee ettt et ettt e 63
Example 16- File: dOTt1A.VES ..ocuviiiiiiiiieiiecieeie ettt et ae e eabeeaeensees 63
Example 17- File: dOTt1@.VES ..oouiiiiiiiiieiieee ettt et e 63
Example 18 - File: dOTtIEVES...ccuiiiiiiiiiciiecieeieece ettt ettt et eesbeennees 63
Example 19 - File: report.vcs - gathers benchmark simulation times.............cocceeveenieiieeniennnen. 64
Example 20 - File: doitall.vcs - execute after setting loop CNT value in the CNT file file......... 64
Example 21 - trans_printing.sv - common printing methods included in each transl class......... 64
Example 22 - File: top.sv - wrapper top-module to permit testing...........cceeeveevveereercreereeeneennen. 65
Example 23 - File: CNT file - holds 100p-CNT valuecoceoirviiniininiiniinicicneecceeeeee 65
Example 24 - File: testl.sv - randomizes, copies and compares in a repeat('CNT) loop............. 66
Example 25 - File: transla.sv - no rand outputs - uses do_methods() - no field macros............. 67
Example 26- File: trans1b.sv - rand outputs - uses do_methods() - no field macros 68
Example 27 - File: trans1c.sv - no rand outputs - uses field macros - no do_methods().............. 69
Example 28- File: trans1d.sv - rand outputs - uses field macros - no do_methods() 70

Example 29 - File: transle.sv - no rand outputs - uses do_methods() - no super.do_methods().. 71

Example 30 - File: trans1f.sv - no rand outputs - uses field macros - no UVM_ALL_ ON flags. 72

SNUG 2014
Rev 1.1

UVM Transactions - Definitions,
Methods and Usage

1. Introduction

All advanced class-based verification methodologies use classes to represent transactions, but
why? Why not use structs?

To advanced users the answers are obvious but to novice users the questions never seem to be
addressed in any literature. The problem is, most existing UVM texts and reference guides were
written by really, really smart software engineers that assume that all users naturally know the
answer to this and many other questions, which is not a valid assumption.

The first step to understand the answers to these questions is to compare class-based transaction
capabilities to struct-based transaction capabilities.

This paper will also go into detail on the creation of transaction classes with standard transaction
methods. The methods will be created using two techniques, (1) do_methods () and (2) UVM
field macros.

2. Classes -vs- structs

New users often ask the question, why use class types instead of structs for verification?

To better understand why classes are used instead of structs, it is useful to compare the different
capabilities between classes and structs in SystemVerilog.

e C(Classes and structs both have multiple fields.

e (lasses can have randomized fields while struct fields cannot be automatically
randomized.

e C(lasses can include randomization constraints while structs cannot include automatic
randomization constraints.

e C(lasses can have important built-in methods while structs cannot have built-in methods.
Classes are a dynamic type and you can generate as many as you need at runtime while
structs are a static type and the user must anticipate and statically declare all required
structs at the beginning of the simulation.

e (lass types can be extended while new versions of a struct must be copied from the
original version and new fields added.

e C(Classes can be put into a UVM factory for easy runtime substitution while structs cannot.

Classes are basically dynamic, ultra-flexible structs that can be easily randomized, easily control
the randomization, and be created whenever they are needed. Classes have the multiple field
encapsulation capability that exist in structs, plus so much more. That is why classes are the
preferred structure to represent testbench transactions.

Another advantage shared by both classes and structs is that they are passed around the testbench
as a unit, whether there is one signal or 1,000 signals in the transaction, so it is easy to pass
signals around the testbench environment with single unit operations. If signals are added or
removed from the transaction, most of the testbench structure requires no modification. There are

SNUG 2014 7 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

just a few testbench components that need to interact with all of the component signals
individually. Some of those components will be discussed in later sections.

3. Transaction class types

Once it is accepted that transactions should be class types, the next question is what should UVM
transaction classes be? UVM testbench transactions are all extensions of the
uvm_sequence_item type, which is a derivative of the uvm object type, and uvm object is the
base class type for all UVM components and transactions (not counting the uvm void type).!

3.1. Class parameter types: uvm_sequence_item & int

The default transaction type for UVM components parameterized to a transaction type and the
uvm_sequence type is the uvm _sequence item type. Example component types that are
parameterized to uvm sequence item include uvm driver and uvm sequencer. All user
transactions will be derivatives of the uvm sequence item type.

A complete list of the eight UVM classes that are parameterized to the uvm_sequence item type
is shown in Appendix A on page 59.

The default type for many of the other UVM base class types parameterized to a transaction type
is the 32-bit, 2-state int type.

NOBODY would ever us the int type as a transaction type. The int type is just the default,
type-based, place holder inside of parameterized classes to make sure the class-based UVM
library will compile correctly. EVERYBODY replaces the int type, typically with a class-based
transaction type. Examples of commonly used components that are parameterized to the int
type include uvm tlm fifo and uvm analysis tlm fifo.

A complete list of the of the 69 UVM base classes that are parameterized to the int type is also
shown in Appendix A on page 59.

3.2. UVM transactions

When approaching class-based verification for the first time a verification engineer is tempted to
create one transaction type for the inputs and another transaction type for the outputs, because
verification engineers who have done directed testing are accustomed to sending inputs into the
design and then sampling the outputs for verification purposes.

When comparing UVM transactions to directed testing methods, transactions have fields for both
inputs and outputs in the same transaction, while directed testing separates the input fields from
the output fields. This is an important point when initially learning class-based verification.

'uvm_void is the root base class for all UVM components and transactions, but it is an empty virtual class that is
extended to create the uvm_object base class. Nobody works with uvm_void but uvm_object is extensively
used within all UVM testbenches.

SNUG 2014 8 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

In a UVM testbench environment the agent includes both a driver and a monitor. Even though
the driver is given a copy of an entire transaction object that includes both inputs and outputs, the
driver collects and only sends the transaction inputs to the design under test (DUT). The
transaction outputs are ignored by the driver. The driver is one of the testbench components that
must extract and properly send the individual input signals to the DUT.

The monitor actually samples both inputs and outputs from the DUT interface. The driver side
agent has a monitor that will sample both the inputs and outputs but only the inputs will be
processed by to the predictor inside of a scoreboard as noted in Figure 1. The sampled outputs
are still in that transaction but they are completely ignored.

The output-side agent uses the exact same monitor, which samples both the inputs and the
outputs from the DUT interface, but on the output-side monitor, even though both the inputs and
outputs have been sampled and sent to the scoreboard, the inputs will be discarded by the
comparator in the scoreboard as noted in Figure 1 and the actual DUT outputs will be used for
comparison against the predicted outputs.

Predictor el Comparator
ignores trans ignores trans
testl ~< .
\\ outputs inputs
env \ o

tb cover

tb_scoreboard

i
'

tb_driver

Sample DUT i . H Sample DUT
inputs & e ————— inputs &
outputs ~ outputs

L
T
| !
1
outputs !

Figure 1 - Transaction passing

The novice UVM verification user is tempted to create two different types of transactions, one
that only holds sampled inputs and another that only holds sampled outputs, but if two different
transaction types are used in two different monitors it means that the agent is not reusable on

SNUG 2014 9 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

both the stimulus-driving and output-sampling sides of the environment. By sampling both
inputs and outputs in the same monitor and discarding the outputs on the stimulus-driving side
and the inputs on the output-sampling side, we can reuse the exact same monitoring agents.

Understanding this technique explains how the same transaction can be used on both the input-
side and output-side of the verification environment. This technique is typically unknown to
engineers who have only done Verilog directed testbenches in the past.

3.3. Unnecessary Output Randomization

If the transaction class has separately defined output and input variables, there is no need to
randomize the output variables.

The randomized inputs will be sent to the DUT while any randomized outputs would just be
discarded; hence, randomization of outputs would just be an inefficient additional simulation
step.

4. UVM transaction types

As previously mentioned, all user-defined transaction types should be extended from the
uvm_sequence_ item type, and the uvm sequence item class type is a derivative of the
uvm_object class type.

4.1. Standard class formatting

Although not required by UVM, I prefer to follow a standard code-layout for my UVM testbench
components and UVM transaction definitions. A standard format helps with the readability of the
code and helps me to quickly find important sections of the code. The formatting steps and order
that I follow are shown in Figure 2.

(0) Declare transaction variables (if field macros are used)
(1) Register class with factory

Optional: declare field macros (mostly in transactions)

|

|

|
(2) Declare variables & covergroups | (if any)
(3) Declare virtual interface | (if any)
(4) Declare ports & components | (if any)
(5) Standard new() constructor |
(6) build phase() | (if any)
(7) connect phase() | (if any)
(8) Other pre-run phases | (if any)
(9) run phase() | (if any)
(10) Other post-run phases | (if any)
(11) Common component methods | (if any)

Figure 2 - Standard class formatting

As noted, the above format and order is not only used for transactions but also for testbench
components. For transactions, there are no phase methods, so my preferred order looks like this:

SNUG 2014 10 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Using Field Macros Using do_methods()

(0) Declare transaction variables

(1) Register class with factory (1) Register class with factory
and declare field macros

(2) Declare vars & covergroups (2) Declare vars & covergroups

(5) Standard new() constructor (5) Standard new() constructor

(11) Common transaction methods (11) Common transaction methods
convert2string () method convert2string () methods

do copy() / do compare() /
other do methods ()

Figure 3 - Transaction formatting w/ field macros Figure 4 - Transaction formatting w/ do_methods()

The differences between using field macros and do_methods () will be described in later
sections.

5. Transaction class methods

One of the advantages of using transaction classes is that they can contain important utility
methods. These important methods remove many coding requirements that existed in Verilog
testbenches.

There are two ways to implement important transaction methods: the first is to use field macros,
the second is to use manual coding techniques by overriding the built-in do_methods ().

Using field macros is relatively simple but they can be inefficient during simulation and difficult
to debug if something does go wrong. The UVM User Guide[8] was largely written by Cadence
UVM experts and Cadence recommends using these field macros. Mentor UVM experts
typically recommend that verification engineers avoid using the field macros due to their coding
and simulation inefficiencies.[1][3][5][12]

Unfortunately, the UVM User Guide only documents the use of field macros and does not
include any documentation about an alternate approach, that of using the do_methods () to
define the standard transaction methods. Similarly, the Verification Academy [12] only shows
the use of do_method () overrides to define the standard transaction methods and does not
demonstrate the alternate approach of using field macros. Verification engineers that reference
these two sources are often perplexed about the divergent recommendations and this becomes a
source of much confusion to novice UVM users. It would have been better if the two major
sources of information had promoted their preferred approach and then acknowledge that there
was an alternate method. Adam Erickson's paper on "Evil Macros"[1] discusses both approaches
and promotes the use of the do_methods (), while many of my professional colleagues prefer the
ease-of-use of the field macros.

Overriding the built-in do_methods () requires more manual coding by the verification engineer
but the overridden do_methods () are more simulation efficient and not too difficult to code once
a few important techniques are understood.

SNUG 2014 11 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Both of these techniques will be described in later sections.
6. Introduction to standard transaction methods

In this paper, the important convenience functions are referred to as standard transaction
methods.

The standard transaction methods are zero-time functions that should be defined in a transaction
class and should always include user defined copy (), compare () and convert2string()
methods. One other method that is important to define is the print () function, just because
many users expect it to be available, even though convert2string () is often both more
simulation and more print-space efficient.

If the design includes serial-to-parallel or parallel-to-serial activities that are very common
among network packet-based designs, additional functions that will be included in the standard
transaction function list, include: pack () and unpack (). One other standard transaction function
is the record () function that is somewhat tool specific and used to help debug transient
transaction objects.

The user should never override the standard transaction methods directly, but instead should
indirectly define the required methods by overriding the base class do_methods () or by
implementing field macros.

Each user transaction class that extends from uvm sequence item inherits the standard
transaction methods, which are mostly-empty methods defined in the uvm object virtual base
class. One or more of these methods should be either directly or indirectly defined in the user
transaction class.

6.1. Factory registration of transactions
The user's transaction class must be registered with the factory.

If you are going to create the standard transaction methods by overriding the built-in
do_methods () you must use the ~uvm object utils() macro.

If you are going to create the standard transaction methods by using field macros, you must use
the “uvm object utils begin() / “uvm object utils end macros.

What is different about these macros? The details are described in ‘uvm_object utils() -vs-
‘uvm_object utils begin()/_end section.

6.2. “uvm_object_utils() -vs- ‘'uvm_object_utils_begin()/_end

In the UVM src/macros/uvm object define.svh file, there exists two forms of
“uvm_object utils() macros to register the transaction with the factory, along with other
important transaction class based setup. The pertinent code is shown below.

SNUG 2014 12 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

“define uvm object utils(T) \
“uvm_object utils begin(T) \
“uvm_object utils end

Figure 5 - Actual “define uvm_object utils macro definition

The first observation to make is that calling ~uvm object utils(T) is equivalent to calling the
back-to-back commands “uvm object utils begin(T) / “uvm object utils end.Ifa
transaction is defined using the ~uvm _object utils(T) macro, no field macros are permitted in
the transaction class definition. This is the technique recommended by Mentor UVM
experts.[1][3]

As shown below, the “uvm _object utils begin (T) macro actually implements some
important user-transaction functionality, including:
“m uvm object registry internal - register the transaction class with the factory

"m _uvm _object create func - define the create () method for this class
“m uvm get type name func - define the get type name () method for this class
“uvm_field utils begin() - prepares to process defined field macros, if used

The actual “uvm object utils begin(T) macro definition is shown in Figure 6.

“define uvm object utils begin(T) \
"m uvm object registry internal(T,T) \
“m uvm object create func(T) \
“m uvm get type name func(T) \
“uvm_ field utils begin(T)

Figure 6 - Actual "define uvm_object_utils_begin macro definition

If the “uvm_object utils() macro is used, the “uvm field utils begin() macro, which
prepares the appropriate setup code for using field macros, is not populated with any field
macros. As stated earlier, the “uvm_object_utils() macro should only be used if important
transaction class methods are defined by overriding the do_methods ().

The “uvm field utils begin() macro defines a few functions important to field macros then
opens a function definition that will be populated by field macros, if used.

The “uvm object utils end macro simply closes off the “uvm field utils begin() macro
using a macro name that intuitively finishes the field utils block. The actual (and trivial)
“uvm object utils end macro definition is shown in Figure 7.

“define uvm object utils end \

end \
endfunction
Figure 7 - Actual “define uvm_object_utils_end macro definition
SNUG 2014 13 UVM Transactions - Definitions,

Rev 1.1 Methods and Usage

Unfortunately, because there are two different macros to register the transaction with the factory,
there are also two different coding styles that are commonly used to define transactions and the
style chosen depends on whether do_method () overrides or field macros are employed.

When I use the do_method () style, the transaction class definition resembles this:
class transl extends uvm sequence item;
“uvm_object utils(transl) -- “uvm object utils() before declaration
<declare variables>
<standard constructor>
<override do methods ()>

When I use the field macros style, the transaction class definition resembles this:
class transl extends uvm sequence item;
<declare variables>
“uvm object utils begin(transl) -- “uvm object utils() after declaration
<declare field macros for variables>
“uvm object utils end
<standard constructor>

It is annoying that I must use two different “uvm _object utils() placements just because I
choose to use do_methods () or field macros, but the field macro style requires the variables to
be declared before they are referenced by field macros, where the declared field macros must be
encapsulated within the ~uvm object utils begin(T) / “uvm object utils end pair.

It is certainly possible to place the ~uvm object utils() macro call after declaring variables
when using the do_methods () style, but I prefer to see my ~uvm _object utils() command at
the top of the class definition, just beneath the class header, just as I do for all testbench
component and sequences classes.

What I really want is a pair of macros to encapsulate the field macros without requiring that they
be placed within a “uvm_object utils begin(T) / “uvm object utils end pair, perhaps
macros called “uvm _field utils begin() / “uvm field utils end. From Figure 6 shown on
page 13, I saw that these macros already existed! So I tried placing the ~uvm object utils()
macro at the top of the transaction class, declared variables, and tried using

“uvm field utils begin() with field macro declarations, as shown in Figure 8.

class transl extends uvm sequence item;
“uvm_object utils(transl)
rand bit [7:0] q;
rand bit [7:0] a, b, c;

“uvm_ field utils begin(transl) // ** Error this line
“uvm field int(q, UVM ALL ON)
“uvm field int(a, UVM ALL ON)
“uvm_field int (b, UVM ALL_ON)
“"uvm_field int(c, UVM_ALL_ON)
“uvm field utils end

Figure 8 - Illegal Syntax - Calling both "uvm_object_utils() and "uvm_field utils begin()

SNUG 2014 14 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Unfortunately, this did not work and the compiler reported the error:
** Error: ' m uvm field automation' already exists;
must not be redefined as a function.

The problem is that the ~uvm object utils() macro also calls the
“uvm field utils begin (T) macro, and since the “uvm field utils begin (T) macro
defines the m uvm field automation function, the function is defined twice, which is illegal.

6.3. __m_uvm_field_automation() method

The “uvm _object utils begin () macro, defined in the
uvm/src/macros/uvm _object defines.svh file, defines the first 20 lines of an internal

_ m uvm field automation() method and the “uvm object utils end macro defines the
last 7 lines of the same macro. If field macros are used to define the standard transaction
methods, each field macro contributes to the middle section of the

__ m uvm field automation () method. For example, each call to the ~uvm field int()
macro adds 59 more lines of code to the middle of the m uvm field automation() macro.

The 59-line block of code added to the m uvm field automation () method is mostly a very
large case () statement that executes the proper code for the case values of:

UVM CHECK FIELDS, UVM COPY, UVM COMPARE, UVM PACK, UVM UNPACK, UVM RECORD,
uvM_PRINT and uvM_SETINT. When the user calls the compare () method, the compare method
actually calls the internally constructed m uvm field automation () method with the

UVM COMPARE argument to execute the uvM_coMpPARE code in each of the added case ()
statements.

For each field macro defined, another large block of code is added to the middle of the

internal m uvm field automation () method, and each block of code includes multiple calls
to other methods withina m uvm status container class, so if there are ever any problems
related to the field macros, the debugging task is extremely verbose and complex. Fortunately,
the field macros work properly most of the time, but when they don't work, debugging is time-
consuming and extremely frustrating.

6.4. Proposed Future UVM Macro Change

It seems that the previous “uvm field utils begin(T) macro problem described in section 6.2
could be easily fixed by modifying the definition for the ~uvm_object utils(T) macro. Instead
of calling “uvm object utils begin(T) / “uvm object utils end, which calls four other
macros, redefine ~uvm _object utils() to just call three of the macros, omitting the call to the
“uvm field utils begin() macro, which appears to be completely unnecessary in a non-field
macros transaction class definition. The newly proposed definition is shown in Figure 9.

SNUG 2014 15 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

“define uvm object utils(T) \
“m uvm object registry internal(T,T) \
"m uvm object create func(T) \
"m uvm get type name func(T)

Figure 9 - Proposed UVM Change - new definition for "uvm_object_utils(T)

If it is determined that there are no backward compatibility issues, I request that the UVM
Standards Committee implement this change. Time to step off the soap box and get back to
technical usage detail.

7. Inherited standard transaction methods

The user's transaction class is extended from the uvm sequence item class, which is derived
from the top-level uvm_object class type. Through this inheritance path, the user's transaction
class inherits the following important utility methods:

copy (),
compare (),
print (), sprint (),
pack (), pack bytes(), pack ints(),
unpack (), unpack bytes(), unpack ints(),
record ()
Figure 10 - Important, inherited utility non-virtual methods

These 11 standard transaction methods are non-virtual functions or non-virtual void functions
and the user should NEVER extend or override any of these important utility methods in a
transaction class. These standard transaction methods execute a large amount of UVM overhead
code and then call the m uvm field automation() method (which executes operations built
from user-declared field macros) followed by calling do_methods (), which can be overridden
by the user, as shown in Figure 11.

As described in the preceding paragraph, it is important to note that calling any of the standard
transaction methods actually executes both field macro code AND the corresponding
do_methods (). The significance of this fact is that an engineer can properly define field macros
and then exclude the implementation of field macro functionality if that functionality is
subsequently implemented using the corresponding do _methods (). Conversely, it is very risky
to implement any of the standard transaction methods by combining partial implementation using
field macros and completing the implementation with a partial-functionality definition in a
do_method (). The latter is never seen in standard industry practice and is highly discouraged.

SNUG 2014 16 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Standard Transaction -AND- Standard Transaction Methods
Methods call do_methods () call field-macro-created code
Override Never call the Call Never override these
these |{ do_methods () -1 these |1 Standard Transaction Methods

‘uvm_object utils()

&
b
)
Q .
~

Override and call this

copy ()

compare ()

Field macros contribute

to these methods

pack _ints()

unpack ()

print() ‘\\\\\\\-—_
sprint () ‘uvm_object utils begin()
‘\\\\4\ ‘uvm field int(..)

pack () | ‘uvm field int(.)
pack_bytes () «— ‘uvm field enum(..)

‘uvm field string(..)

‘uvm_object utils end

— convert2string ()« |

Field macros do not build
convert2string()

Figure 11 - Standard transaction methods - two ways to create them

The actual prototypes for these 11 methods are shown in Figure 12.

function void copy

(uvm object rhs);

function bit compare (uvm_object rhs, uvm comparer comparer=null) ;
function void record (uvm_recorder recorder=null) ;
function void print (uvm_printer printer =null);
function string sprint (uvm_printer printer =null);
function int pack (ref bit bitstream [],

input uvm packer packer=null) ;
function int pack bytes (ref byte unsigned bytestreaml[],

input uvm packer packer=null) ;
function int pack ints (ref int wunsigned intstream [],

input uvm packer packer=null) ;
function int unpack (ref bit bitstream [],

input uvm packer packer=null) ;
function int unpack bytes (ref byte unsigned bytestreaml],

input uvm packer packer=null) ;
function int unpack ints (ref int wunsigned intstream [],

input uvm packer packer=null) ;

Figure 12 - Important utility non-virtual method prototypes

SNUG 2014
Rev 1.1

17 UVM Transactions - Definitions,

Methods and Usage

7.1. Should | override the standard transaction methods?

So why do I have to declare field macros or override do_methods () to help implement the non-
virtual methods shown in Figure 10. Why don't I just override these standard transaction methods
directly and bypass the field macros and do_methods () ?

Are you kidding? Have you seen the code for these methods in the uvm_object. svh file??

WARNING: you should not take any time to try to read, examine or figure out the following 69
lines of compare () code from the uvm_object base class. It is inserted into this paper to
discourage you from ever considering the option to override the built-in compare () method. You
should either use field macros or override the do_compare () method.

1 // compare
2 // -------
3
4 function bit wuvm object::compare (uvm object rhs,
5 uvm_comparer comparer=null) ;
6 bit t, dc;
7 static int style;
8 bit done;
9 done = 0;
10 if (comparer != null)
11 __ m uvm status container.comparer = comparer;
12 else
13 __m uvm_status container.comparer = uvm default comparer;
14 comparer = m uvm status container.comparer;
15
16 if(! m uvm status container.scope.depth()) begin
17 comparer.compare map.clear () ;
18 comparer.result = 0;
19 comparer.miscompares = "";
20 comparer.scope = _m uvm status container.scope;
21 if (get name() == "")
22 __m uvm_status container.scope.down ("<object>") ;
23 else
24 _ m uvm status container.scope.down(this.get name()) ;
25 end
26 if (!done && (rhs == null)) begin
27 if(_ _m uvm status container.scope.depth()) begin
28 comparer.print msg object(this, rhs);
29 end
30 else begin
31 comparer.print msg object(this, rhs);
32 uvm_report info ("MISCMP",
33 $sformatf ("%$0d Miscompare(s) for object %s@%0d vs. null",
34 comparer.result,
35 __ m uvm status container.scope.get(),
36 this.get inst id()),
37 m uvm_status container.comparer.verbosity) ;
38 done = 1;
39 end
40 end
41
SNUG 2014 18 UVM Transactions - Definitions,

Rev 1.1 Methods and Usage

42 if (!done && (comparer.compare map.get(rhs) != null)) begin

43 if (comparer.compare map.get(rhs) != this) begin

44 comparer.print msg object(this, comparer.compare map.get(rhs)) ;

45 end

46 done = 1; //don't do any more work after this case, but do cleanup

47 end

48

49 if (!done && comparer.check type && (rhs != null) &&

50 (get _type name() != rhs.get type name())) begin

51 __m uvm status container.stringv = { "lhs type = \"", get type name(),
52 "\" : rhs type = \"", rhs.get type name(), "\""};

53 comparer.print msg(m uvm status container.stringv);

54 end

55

56 if (!done) begin

57 comparer.compare map.set(rhs, this);

58 _ m uvm field automation(rhs, UVM COMPARE, "");|// LINE 58-field macros
59 dc = do_compare (rhs, comparer) ; // LINE 59-do compare ()
60 end

61

62 if(__m uvm status container.scope.depth()==1) begin

63 _ m uvm status container.scope.up();

64 end

65

66 if(rhs != null)

67 comparer.print rollup(this, rhs);

68 return (comparer.result == 0 && dc == 1);

69 endfunction
Figure 13 - UVM 1.1d - src/base/uvm_object.svh - compare() method implementation

REMINDER: you should not take any time to try to read, examine or figure out the preceding 69
lines of compare () code. It is inserted into this paper to discourage you from ever considering
the option to override the built-in compare () method. You should either use field macros or
override the do_compare () method. Anybody who tries to correctly override the built-in
compare () method either needs to get-a-life or get-a-hobby! (Writing this paper makes me think
that I need to get-a-life!!)

From the code in Figure 13, it can be seen that the default compare () method will make a call to
implement the field macros (red-highlighted code on line 58) and will also call the user-defined
do_compare () method (red-highlighted code on line 59). Your job is to either define field
macros or override the do_compare () method and they will be automatically called by callbacks
from the compare () method.

The problem you face if you try to override the compare () code is that there are 57 lines of
important code before you either call the field macros on line 58, or call your implementation of
the do compare () method on line 59 (both of which are embedded in an internal i £-statement).
Then you still need to add 10 more lines of code after field macros or do_compare (). This
means you cannot simply make a call to super.compare (). You would need something like a
call to super.pre 59 lines compare (), add you compare code, then call something like a
super.post 10 lines compare (), Which of course is ridiculous!

SNUG 2014 19 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

There is similarly cryptic uvm_object base class code for the other important standard
transaction methods. The value of the existing field macros and do_method () callbacks should
now begin to be more obvious!

Guideline: do not directly override the copy (), compare () and other uvm object base class
standard transaction methods.

7.2. Inherited transaction utility methods

The user's transaction class, ultimately derived from the top-level uvm_object class type, also
inherits the 3 important utility methods shown in Figure 14.

create(),
clone(),
convert2string(),
Figure 14 - Important, inherited utility virtual methods

These 3 methods are virtual functions or virtual void functions. The actual prototypes for these 3
methods are shown in Figure 15.

virtual function uvm object create (string name="");
return null;
endfunction

virtual function uvm object clone ();
uvm_object tmp;
tmp = this.create(get name());

if (tmp == null) “uvm warning("CRFLD", "... create failed ...")
else tmp.copy (this) ;
return (tmp) ;

endfunction

virtual function string convert2string() ;
return "";
endfunction

Figure 15 - Important utility virtual method prototypes

The virtual do methods () will be described in later sections, but the create (), clone () and
convert2string () methods are described in the next three sections.

7.3. create() method

Per the UVM Class Reference manual, "Every class deriving from uvm object, directly or
indirectly, must implement the create method."[7] When the ~uvm object utils(T) macro is
called, one of the actions of that macro is to automatically implement the create () method (the
utils macro calls the “m_uvm object create func (T) macro). If we do not call the
“uvm_object utils() macro, among other things, we would need to implement the create ()
method manually. A manual implementation example of the create () method from the UVM
Class Reference manual is shown in Figure 16.

SNUG 2014 20 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

class mytype extends uvm object;

virtual function uvm object create(string name="");
mytype t = new(name);
return t;
endfunction
Figure 16 - uvm_object create() method - manual definition

Guideline: never manually implement the create () method. Call the “uvm object utils()
macro to automatically implement the create () method.

7.4. clone() method

By default, the clone () method calls the create () method (constructs an object of the same
type) and then calls the copy () method. It is a one-step command to create and copy an existing
object to a new object handle.

Guideline: never override the clone () method. The existing default behavior is good.
7.5. convert2string()

The convert2string () method is one of the most important methods to define within a
transaction. In the absence of a convert2string () method, each user has to decide how to print
transaction values at different locations in the testbench.

The default convert2string () method defined in the uvm_object virtual base class is basically
a placeholder and just returns an empty string. The relevant code snippets for the uvm_object
base class convert2string () method are shown in Figure 17.

extern virtual function string convert2string() ;

function string uvm object::convert2string() ;
return "";
endfunction

Figure 17 - uvim_object source code for convert2string()

It is a common courtesy that the designer of every transaction class should override the
convert2string () method with a well formatted string of the transaction variables. The
convert2string () method is more efficient than calling the transaction print () method,
which has to format the variables into table or tree-like formats.

Guideline: Every user-defined transaction method should include a convert2string () method.
By creating a convert2string () method, the transaction class developer is providing, to

anybody who uses the transaction objects, the ability to print out the transaction object contents
without the trouble to create their own display-type command.

SNUG 2014 21 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The convert2string () method returns a formatted string of the transaction object's field
contents. The convert2string () method should be called from a message macro, which also
includes an "id" string field and a verbosity setting.

7.6. Plan for extended convert2string() methods

The convert2string () method of a transaction class extended from a base transaction class
will either need to reformat all of the base class convert2string () transaction variables
(discouraged) or call super.convert2string () to pick up the string information for the base
transaction variables (preferred).

When printing, I prefer to group transaction inputs together followed by grouped transaction
outputs. If you call super.convert2string(), you will probably have the extended input and
output signals mixed with the base class input and output signals.

To avoid a mixed order of inputs and outputs, I recommend the creation of two more transaction
functions called output2string() and input2string().

In the following example (Figure 18), trans2 extends transl and both classes have
input2string() and output2string () methods. The extended class makes super. string-
method () calls, concatenating extended variables to base class variables in the respective return
statements:

intputs: return ({super.input2string(), " " ,s});

outputs: return ({super.output2string(), " " ,s});

The trans2 transaction class has a very simple definition for convert2string (), which
includes: return ({output2string(), " ", input2string()});

This way the inputs are grouped together and outputs are grouped together when printed.

class transl extends uvm sequence item;
“uvm_object utils(transl)
bit [7:0] a; // base output
rand bit [7:0] b; // base input

function string input2string() ;
return($sformatf ("b=%2h", b));
endfunction

function string output2string();
return ($sformatf ("a=%2h", a));
endfunction

function string convert2string();
return ({input2string(), " ", output2string()});
endfunction
endclass

class trans2 extends transl;
“uvm_object utils(trans2)
bit [7:0] c¢; // extended output

SNUG 2014 22 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

rand bit [7:0] d4; // extended input

function string input2string();

string s;

s = $sformatf ("d=%2h", d4);

return ({super.input2string()," ",s});
endfunction

function string output2string();

string s;

s = $sformatf ("c=%2h", c);

return ({super.output2string()," ",s});
endfunction

function string convert2string();
return ({input2string(), " ", output2string()});
endfunction
endclass

Figure 18 - Extended transaction function calls to super.output2string() & super.input2string()

7.7. Transaction printAll() method??

There are some examples in industry where the creators of transaction classes also create built-in
printall () methods that can be called directly without the need to call the convert2string ()
method from a ~uvm_info () macro. This is not recommended because although inserting a
printall () method into the transaction would certainly make printing transaction information
easier, it unfortunately also semi-permanently fixes the "id" string and verbosity setting.

The convert2string () method returns a string value that should be called from a
“uvm_info (), "uvm error() or‘uvm_fatal()Inessagernacnlz

There are times when you will want to report debug information and you will want to print
transaction values with a verbosity setting of utvM DEBUG. At other times you will want the
transaction values to print using the default uvM MEDIUM verbosity setting, while at other times
you will want to only print successful transaction values if you enable the uvm HIGH verbosity
setting. It is also useful to use unique "id" values in different places so that printing of some
transactions can be masked while printing of other transactions can be promoted to always print.

If field macros are used, the built-in print () method will be populated, but when using the
print () method the printed values will again be largely unmaskable and printed in a somewhat
verbose multi-line table or tree format. For these reasons and for better verbosity control, I tend
to skip the print () method in favor of the convert2string () method.

2 The “uvm warn message macro is almost worthless because it has a verbosity setting of
uvM_NoNE and is therefore difficult to suppress. I prefer to use “uvm_info message macros with
different verbosity settings to replace the cumbersome ~uvm warn message macro.

SNUG 2014 23 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

8. Do_methods()

As was mentioned earlier, there are two ways to implement the important standard transaction
methods. The standard transaction methods can be implemented using either the field macros or
by overriding the built-in do_methods () shown in Figure 20. This section describes the
implementation of the standard transaction methods by overriding the do methods ().

The 11 standard transaction methods shown in Figure 19 can be implemented by overriding the 6
do_methods () also shown in Figure 19. The do _methods () are empty callback methods defined
in the uvm_object base class. The user should never directly call any of the do_methods (). The
do_methods () are called by the like-named, 11 standard transaction methods that are inherited

from the uvm_object base class.

Defining Standard Transaction Method
behavior using do_methods ()

Override Never call the
these |{ do_methods ()

Call Never override these
-1 these |-{ Standard Transaction Methods

‘uvm_object utils()

do_copy() —+——

do compare () %»

do_print() ——— "

do_pack() <E
do_unpack() <<E

do record() —.—.

copy ()

compare ()

print ()
sprint ()

| pack ()
pack_bytes ()
rpack ints()
unpack ()

unpack bytes() |

runpack ints ()

record()

Override and call this |—— convert2string()

Figure 19 - Creating the standard transaction methods by overriding the built-in do_methods()

The user can override the built-in do_methods (), shown in Figure 20, which will affect how the
standard transaction methods behave when called.

SNUG 2014
Rev 1.1

24

UVM Transactions - Definitions,
Methods and Usage

do_copy ()
do compare ()
do print ()
do pack()
do_unpack ()
do record()

Figure 20 - Inherited do_method() hooks to define standard transaction methods

8.1. Virtual method rules and virtual do_method() prototypes

All of the user-overridable do_methods () are virtual methods, and SystemVerilog virtual
methods have strict argument compatibility rules. When extending a SystemVerilog class and
overriding a virtual method in an extended class, all argument types, names and return types
must match the base class virtual method argument types and names, which means the method
argument types and names cannot be changed.

This is simply a rule of object oriented languages like SystemVerilog and has nothing to do with
the UVM methodology. UVM users must simply follow SystemVerilog rules and this is one of
those rules.

Since all of the do_methods () in the uvm _object base class are virtual methods, overriding
those methods in the user transaction class requires the user to use the exact same argument types
and names.

8.2. base-class casting to extended class handle

Nonspecific to UVM is the concept of assigning a base class handle to an extended class handle.
Although it is a somewhat side-topic, it is an important topic when using UVM so it discussed in
this section.

SystemVerilog permits direct assignment of an extended handle to a base handle. There might be
multiple different extensions of the same base class type, and each extension can add unique
variables and define different unique methods in the extended class. Since any of these extended
class handles can be assigned to the base class handle, the newly assigned base handle cannot
call the extended methods and variables that were added to extended classes since those variables
and methods could be different from assignment to assignment and the base class can only
guarantee existence of base methods and variables.

On the other hand, SystemVerilog does NOT permit direct assignment of a base class handle to a
derived class handle because the derived class typically expects to access more variables and
methods than existed in the base class definition and if the base class handle was assigned from a
completely different extended object, the expected methods and variables might not exist. The
base class handle type has no knowledge of the extended variables and methods.

If a constructed extended class object is assigned to a base class handle, the handle type is
converted to the base class handle type and access to extended methods and extended variables is

SNUG 2014 25 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

not possible using the base class handle, even though the methods and variables still exist. If this
base class handle is then $cast® back to a declared extended class handle, then we again have
access to the original variables, their values, and the extended methods. This is an important
technique used with UVM standard do_methods ().

function void do copy(uvm object rhs);
transl tr;
if(!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do copy() cast")
a = tr.a;
(copy remaining variables)
endfunction

function bit do compare(uvm object rhs, uvm comparer comparer) ;
transl tr;

bit eq;

if (!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do compare() cast")
eq = super.do compare(rhs, comparer);

eq &= (a == tr.a);

(compare remaining variables)
return (eq) ;
endfunction

Figure 21 - Overriding the do_copy() and do_compare() methods with uvm_object inputs

In Figure 21, the first three lines of the do_copy () method and three of the first four lines of the
do_compare () method are standard required code. In all of the do_methods (), the first
argument of the prototype header is an input of the uvm_object base class handle type, but when
each do_method () is called, they will be passed an extended transl transaction class handle,
which will convert the transi transaction class handle into the rhs uvm object base class
handle type.

Once a transl class handle has been converted into a uvm_object base-class handle type, it is
necessary to (1) declare a handle of the transi (derivative of uvm object) handle type, and
then (2) $cast the uvm object base class handle-type back into the transi (derivative) class
handle type, to recover all of the transaction variables and gain access to the transaction methods
that were hidden when the transaction handle was converted into a uvm object handle.

This is why the first few lines of each UVM standard do_method () might look strange. This
$casting is simply a required step to recover all of the variables and methods of a transaction
type, and is just SystemVerilog overhead code required by the UVM standard do_methods ().

8.3. rhs & rhs_ do_method() arguments
There are many industry example implementations of the do_methods () where the transi (or

equivalent) transaction class handle is declared with the handle name rhs_ as shown in Figure
22. Then the do_method () input argument rhs is $cast to the transl rhs handle. I

3 $cast performs checking. If the base class is holding a handle to a derived type that is different than the type being
assigned, $cast will fail. When $cast is called as a task, this failure results in a tool-generated error message. When
$cast is called as a function, the failure results in a return status of 0 (a success returns 1).

SNUG 2014 26 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

personally believe this adds confusion to the code. It is too easy for the reader to miss the trailing
" "on the rhs_handle and make incorrect assignments and assumptions.

function void do copy(uvm object rhs);
transl rhs ;
$cast(rhs , rhs);
if(!$cast(rhs , rhs)) “uvm fatal("transl", "ILLEGAL do copy() cast")
a = rhs .a;
(copy remaining variables)
endfunction

Figure 22 - Common do_copy() coding example with transl declared using rhs_ handle name

The uvm_object handle name of rhs in each of the standard transaction methods prototypes
cannot be modified, but the commonly used transaction rhs_handle name can be changed. |
prefer to replace the rhs handle name with tr as shown in Figure 23, which is visibly distinct
from the input rhs handle name.

function void do copy(uvm object rhs);
transl tr;
if(!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do copy() cast")
a = tr.a;
(copy remaining variables)
endfunction

Figure 23 - Preferred do_copy() coding example with transl declared using tr handle name

I believe the code is more readable and less error prone by using the distinct tr handle name.
8.4. uvm_object default do_methods()

The UVM top-level base class (at least the one we care about) is the uvm_object class type. The
uvm_object virtual base class includes the following empty void virtual functions:

do_copy () (Figure 26),
do_print () (Figure 29),
do_record() (Figure 30),
do_pack() (Figure 31),
do_unpack() (Figure 32)

The uvm_object virtual base class also includes one almost-empty status-returning virtual
function:
do compare() (Figure 33).

8.5. copy() and do_copy()
The built-in copy () method executes the m uvm field automation () method with the

required copy code as defined by the field macros (if used) and then calls the built-in do_copy ()
virtual function. The built-in do _copy () virtual function, as defined in the uvm object base

SNUG 2014 27 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

class, is also an empty method, so if field macros are used to define the fields of the transaction,
the built-in copy () method will be populated with the proper code to copy the transaction fields
from the field macro definitions and then it will execute the empty do copy () method, which
will perform no additional activity.

The copy () method can be used as needed in the UVM testbench. One common place where the
copy () method is used is to copy the sampled transaction and pass it into a sb_calc_exp ()
(scoreboard calculate expected) external function that is frequently used by the scoreboard
predictor[2] as shown in Figure 24.

Output calculator Compares expected output
takes tr.copy () | to actual output
testl-. of trans | | exp tr.compare(out_ tr)
env \\ - -

Sample DUT i ; H Sample DUT
— inputs & et inputs &
T outputs = outputs
= -~ = ~
=~ -~ ~ ~

L

T

/
e

Figure 24 - Transaction copy() and compare() methods - common usage block diagram

An example usage of the copy () method is shown in the scoreboard calculate-expected function
of the sb_predictor::sb calc exp() function in Figure 25. The transaction is passed through
auvm_analysis port (originating from the tb_monitor in the tb_agent) to the

sb_calc_exp () method in the sb_predictor located inside the tb_scoreboard class. The t
transaction is then copied to a locally declared and created (line 4) transaction object

(tr.copy (t) ; on line 14), then the calculated output value dout is copied to the transaction
dout variable (tr.dout = dout; on line 18) and returned to the calling sb_predictor
component (line 19).

SNUG 2014 28 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

19

function transl sb predictor::sb calc _exp (transl t);

static logic [15:0] next dout;
logic [15:0] dout;
transl tr = transl::type id::create("tr");

“uvm info(get type name(), t.convert2string(), UVM HIGH)
// async reset: reset the next dout AND current dout values -OR-

// non-reset : assign dout values & calculate the next dout values
dout = next dout;

if (tt.rst n) {next dout,dout} = '0;

else if (t.1ld) next dout = t.din;

else if (t.inc) next dout++;

// copy all sampled inputs & outputs

tr.copy(t);

// overwrite the dout values with the calculated wvalues.

// dout values were either calculated in the previous cycle
// or asynchronously reset in this cycle

tr.dout = dout;

return(tr) ;

20 endfunction

8.6.

Figure 25 - Example sb_predictor.sv - collecting transactions using the tr.copy() method

Using the copy() method: to_tr.copy(from_tr)

The copy () method copies values from the £rom_tr object to the variables in the to_tr object
(you are copying the values of variables from another transaction into this transaction). The
transaction handle that is used to call the method name holds the destination variables. The
transaction handle that is passed as an argument to the method holds the source variable values.

The default do_copy () method defined in the uvm object virtual base class is empty. The
relevant code snippets are shown in Figure 26.

extern virtual function void do_ copy(uvm object rhs);

function void uvm object::do copy(uvm object rhs);
return;
endfunction

Figure 26 - do_copy() inherited virtual method prototype and source code

The transl code with do_copy () method used with the sb_predictor class code of Figure 25
is shown in Figure 27.

class transl extends uvm sequence item;
“uvm_object utils(transl)

logic [15:0] dout; // outputs not randomized
rand bit [15:0] din;
rand bit rst n;
SNUG 2014 29 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

function new (string name="transl");
super.new (name) ;
endfunction

function void do copy(uvm object rhs);
transl tr;
if(!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do copy() cast")

dout = tr.dout;

din = tr.din;

rst n = tr.rst n;
endfunction

function bit do compare(uvm object rhs, uvm comparer comparer) ;
transl tr;

bit eq;
if(!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do compare() cast")
eq = super.do compare(rhs, comparer);
eq &= (dout === tr.dout);
return (eq) ;
endfunction

function string input2string();
return ($sformatf ("din=%4h rst n=%b", din, rst n));
endfunction

function string output2string();
return($sformatf ("dout=%4h", dout));
endfunction

function string convert2string();
return($sformatf ({input2string(), " ", output2string()}));
endfunction
endclass

Figure 27 - trans1 example with do_copy() and do_compare() methods defined

8.7. print(), sprint() and do_print()

The built-in print () method is a void function that prints all of the field-macro defined fields in
a table format by default. A print () method would only print the table header and footer if field
macros are omitted and do_print () is not overridden by the user. Printing with the print ()
method is not tracked in the final UVM Report Summary because it cannot be called from the
message macros with "id" string fields. Because the print () method is not called from the
message macros, it also cannot be suppressed by using different UVM verbosity settings.

By contrast, the built-in sprint () method is a function that returns a multi-line formatted string
with all of the defined fields in a table format (by default) and should be called from the message
macros. Printing with the sprint () method is tracked in the final UVM Report Summary and
since it is called from the message macros, it can be suppressed by using different UVM
verbosity settings.

SNUG 2014 30 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Since it is very likely that some user will attempt to call the transaction print () method, the
next two either-or guidelines are recommended to avoid unexpected results.

Guideline: Implement the print () method using field macros.

-OR-

Guideline: Implement a do_print () method that returns the following string, "print() and
sprint() are not implemented for this transaction type" as shown in Figure 28.

function void do print(uvm printer printer);
$display ("\n\n\t\t*** print() and sprint() are not implemented ",
"for this transaction type ***\n\n");
endfunction
Figure 28 - NULL do_print() method

More important guidelines regarding transaction printing are shown below.

Guideline: Avoid using the print () method. Its output is verbose and cannot be suppressed by
using UVM verbosity settings.

Guideline: Avoid using the sprint () method. Its output is verbose.

Guideline: If you do use one of the built-in printing methods, choose sprint () over print ()
and call it from a UVM message macro. Runtime verbosity settings can mask verbose sprint ()
method printouts if desired.

Guideline: Define and use the convert2string () method discussed in earlier sections.
convert2string () is more simulation efficient, more print-space efficient and can be easily
suppressed by using different runtime UVM verbosity settings.

The built-in print () and sprint () methods either implement the required code as defined by
the field macros or they call the built-in do_print () virtual function. The built-in do_print ()
virtual function, as defined in uvm_object, is an empty method, so if field macros are used to
define the fields of the transaction class, the built-in print () and sprint () methods will be
populated with the proper printing code from most field macros and then they will execute the
empty do_print () method, which will perform no additional activity.

The default do_print () method defined in the uvm_object virtual base class is empty. The
relevant code snippets are shown in Figure 29.

extern virtual function void do print (uvm printer printer);

function void uvm object::do print(uvm printer printer);

return;
endfunction
Figure 29 - do_print() inherited virtual method prototype and source code
SNUG 2014 31 UVM Transactions - Definitions,

Rev 1.1 Methods and Usage

8.8. record() and do_record()

The built-in record () method executes the m uvm field automation() method with the
required record code as defined by the field macros (if used) and calls the built-in do_record ()
virtual function. The built-in do record () virtual function, as defined in the uvm object base
class, is also an empty method, so if field macros are used to define the fields of the transaction,
the built-in record () method will be populated with the proper code to record the transaction
fields from the field macro definitions and then it will execute the empty do_record () method
which will perform no additional activity.

The default do_record () method defined in the uvm object virtual base class is empty. The
relevant code snippets are shown in Figure 30.

extern virtual function void do record (uvm recorder recorder) ;

function void uvm object::do record(uvm recorder recorder) ;
return;
endfunction

Figure 30 - do_record() inherited virtual method prototype and source code

8.9. pack() and do_pack()

The built-in pack (), pack bytes (), and pack_ints () methods execute the

~_m_uvm_field automation() method with the required packing code as defined by the field
macros (if used) and then

they call the built-in do_pack () virtual function. The built-in do_pack () virtual function, as
defined in the uvm_object base class, is an empty method, so if field macros are used to define
the fields of the transaction class, the built-in pack (), pack bytes (), and pack ints ()
methods will be populated with the proper packing code from most field macro definitions and
then they will execute the empty do_pack () method which, will perform no additional activity.

The default do_pack () method defined in the uvm object virtual base class is empty. The
relevant code snippets are shown in Figure 31.

extern virtual function void do pack (uvm packer packer) ;

function void uvm object::do pack (uvm packer packer);
return;
endfunction

Figure 31 - do_pack() inherited virtual method prototype and source code

8.10. unpack() and do_unpack()

Similarly, the built-in unpack (), unpack bytes (), and unpack ints () methods execute the
__m _uvm_field automation() method with the required unpacking code as defined by the field

SNUG 2014 32 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

macros (if used) and then they call the built-in do_unpack () virtual function. The built-in
do_unpack () virtual function, as defined in the uvm_object base class, is an empty method, so
if field macros are used to define the fields of the transaction class, the built-in unpack (),
unpack_bytes (), and unpack_ints () methods will be populated with the proper unpacking
code from most field macro definitions and then they will execute the empty do_unpack ()
method, which will perform no additional activity.

The default do_unpack () method defined in the uvm object virtual base class is empty. The
relevant code snippets are shown in Figure 32.

extern virtual function void do unpack (uvm packer packer) ;

function void uvm object::do unpack (uvm packer packer) ;
return;
endfunction

Figure 32 - do_unpack() inherited virtual method prototype and source code

8.11. compare() and do_compare()

The built-in compare () method executes the m_uvm_field automation() method with the
required comparison code as defined by the field macros (if used) and then calls the built-in
do_compare () virtual function. The built-in do_compare () virtual function, as defined in the
uvm_object base class, is an empty method that returns a "1" ("true") value, so if field macros
are used to define the fields of the transaction, the built-in compare () method will be populated
with the proper code to compare the transaction fields from the field macro definitions and then
it will perform an and operation with the "1" value returned from the do_compare () method,
which will perform no additional activity.

The default do_compare () method defined in the uvm_object virtual base class is almost empty,
but the default return value is 1 ("true"). The relevant code snippets are shown in Figure 33.

extern virtual function bit do compare(uvm object rhs, uvm comparer comparer) ;

function bit uvm object::do compare(uvm object rhs, uvm comparer comparer) ;
return 1;
endfunction

Figure 33 - do_compare() inherited virtual method prototype and source code

The compare () method can be used as needed in the UVM testbench. One common and very
important place where the compare () method is used is to compare the outputs of the expected
transaction to the outputs of the actual transaction as shown in Figure 24.

An example usage of the compare () method is shown in the run_phase () task of the
sb_comparator class in Figure 34. A forever-loop in the run_phase () task continuously gets
the expected transaction from the predictor (expfifo.get (exp tr)), then gets the output

SNUG 2014 33 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

transaction (outfifo.get (out_tr)), and then compares the output values from each
transaction to each other (out tr.compare (exp tr)). Since the compare () method was
properly defined using the do_compare () method, and only compares outputs and not inputs for
this design in the transl transaction class of Figure 27, the comparison in the scoreboard
comparator is a very simple operation.

class sb _comparator extends uvm component;
“uvm component utils(sb_ comparator)

int VECT CNT, PASS CNT, ERROR CNT;

uvm_analysis export # (transl) axp in;
uvm_analysis export # (transl) axp out;
uvm tlm analysis fifo #(transl) expfifo;
uvm tlm analysis fifo #(transl) outfifo;

function new (string name, uvm component parent);
super.new (name, parent);
endfunction

function void build phase(uvm phase phase);
super.build phase (phase);
axp in = new("axp in", this);
axp out new("axp out", this);
expfifo = new("expfifo", this);
outfifo = new("outfifo", this);
endfunction

function void connect phase(uvm phase phase);
super.connect phase (phase) ;
axp in.connect (expfifo.analysis export) ;
axp out.connect (outfifo.analysis export);
endfunction

task run phase (uvm phase phase);
transl exp tr, out_tr;

forever begin
expfifo.get(exp tr);
outfifo.get (out tr);
if (out tr.compare(exp tr)) PASS (exp tr);
else ERROR (exp tr, out tr);
end
endtask

function void report phase (uvm phase phase);
super.report phase (phase) ;
if (VECT CNT && !ERROR CNT)
\uvm_info("COMPARATOR",
$sformatf ("\n\n\n*** TEST PASSED - %0d vectors ran, %0d vectors passed ***\n",
VECT CNT, PASS CNT), UVM LOW)
else

“uvm_error ("COMPARATOR",
$sformatf ("\n\n\n*** TEST FAILED - %0d vectors ran, %0d vectors passed, %0d vectors failed ***\n",
VECT CNT, PASS CNT, ERROR CNT))
endfunction

SNUG 2014 34 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

function void PASS(transl exp tr);
“uvm_info("cmp vector",
$sformatf ("*** Vector Passed: %s ***", exp tr.convert2string()), UVM HIGH)
VECT CNT++;
PASS CNT++;
endfunction

function void ERROR(transl exp tr, out tr);
“uvm_error ("cmp vector",
$sformatf ("Actual %s does not match expected %s",
out tr.output2string(),
exp tr.convert2string()))
VECT CNT++;
ERROR CNT++;
endfunction
endclass

Figure 34 - Example sb_comparator.sv - comparing transactions using out_tr.compare(exp_tr)

Implementing a proper compare () method using field macros or by overriding the
do_compare () method in the transaction class greatly simplifies the creation of a UVM
testbench.

8.12. uvm_comparer policy class methods

It should be noted that the do_compare () method has an often-overlooked second input
argument of the uvm_comparer policy class with handle-name comparer.

Many examples in industry ignore the comparer handle and run the comparison calculations

themselves and shown in the do_compare () method of Figure 35.
class trans9 extends uvm sequence item;
rand bit [7:0] a, b, c;

“uvm_object utils begin(trans9)
“uvm field int(a, UVM ALL ON | UVM NOCOMPARE)
“uvm_field int(b, UVM ALL ON | UVM NOCOMPARE | UVM NOCOPY)
“uvm field int(c, UVM ALL ON | UVM NOCOMPARE)

“uvm _object utils end

function new (string name="trans9");
super.new (name) ;
endfunction

function bit do compare(uvm object rhs, uvm comparer comparer) ;
trans9 tr;

bit eq;

if (1$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do compare() cast")
eq = super.do compare(rhs, comparer);

eq &= (a == tr.a); // Compare outputs

eq &= (b == tr.b);

eq &= (c == tr.c);

return (eq) ;

SNUG 2014 35 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

endfunction

“include "print trans.sv"
endclass
Figure 35 - do_compare() method that does not use the uvin_comparer

An engineer may choose to take advantage of the built-in uvm comparer methods to run the
comparisons and print a standard output message when the compared fields do not match. The
trans10 class example in Figure 36 calls one of the uvm comparer methods called

compare field int (), with arguments that include a string name for the field being compared
(for error reporting), the name of the local variable and the name of the compare-object variable
along with the size of the variables being compared. As an interesting side note, the example of
Figure 36 properly uses field macros to define most of the standard transaction methods but
excludes the compare () method from field macro implementation. The compare () functionality
is added by defining the do _compare () method in the trans1o0 class (this technique was
described at the beginning of Section 7).

class transl0 extends uvm sequence item;
rand bit [7:0] a, b, c;

“uvm _object utils begin(transl0)
“uvm field int(a, UVM ALL ON | UVM NOCOMPARE)
“uvm_field int(b, UVM ALL ON | UVM NOCOMPARE | UVM NOCOPY)
“uvm field int(c, UVM ALL ON | UVM NOCOMPARE)

“uvm_object utils end

function new (string name="translO0") ;
super.new (name) ;
endfunction

function bit do compare(uvm object rhs, uvm comparer comparer) ;
transl0 tr;

bit eq;
if (!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do compare() cast")
eq = super.do compare(rhs, comparer);

eq &= comparer.compare field int("a", a, tr.a, 8);
eq &= comparer.compare field int("b", b, tr.b, 8);
eq &= comparer.compare field int("c", c, tr.c, 8);
return (eq) ;

endfunction

“include "print trans.sv"
endclass
Figure 36 - do_compare() method that DOES use the uvm_comparer methods

In both the trans9 and trans10 class examples, the b-variable was intentionally not copied to
test the do_compare () methods and their accompanying error reporting capabilities. The trans9
class example did user defined comparisons and the only reported error actually came from the
top-level test. The trans10 class example called the comparer.compare field int()
methods, which did the comparisons and displayed additional [MIScMP] messages that are called
from the built-in compare field int () method. The miscompare messages from both the
trans9 and trans10 classes are shown in Figure 37.

SNUG 2014 36 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

// trans9 output

UVM INFO body run.sv(6) @ 0: uvm test top [trl] inputs:a=be b=93 c=44
UVM_INFO body run.sv(7) @ 0: uvm test top [x1] inputs:a=be b=00 c=44

UVM _ERROR body run.sv(9) @ 0: uvm test top [ERRORCMP] xl1 fields do NOT match trl
fields

// transl0 output
UVM_INFO body run.sv(6) @ 0: uvm test top [trl] inputs:a=be b=93 c=44
UVM_INFO body run.sv(7) @ 0: uvm test top [x1] inputs:a=be b=00 c=44
UVM INFO @ 0: reporter [MISCMP] Miscompare for xl.b: lhs = 'hO : rhs = 'h93
UVM INFO @ 0: reporter [MISCMP] 1 Miscompare(s) for object trl@464 vs. x1@468
UVM_ERROR body run.sv(9) @ 0: uvm test top [ERRORCMP] x1 fields do NOT match trl
fields

Figure 37 - Non-comparer output -vs- uvin_comparer reported messages

It is beyond the scope of this paper to go into detail regarding the uvm comparer policy class,
but there are a number of different knobs to control the uvm comparer behavior, along with a
number of built-in methods to help conduct comparisons. A short list of the built-in methods and
an abbreviated description of their behavior as shown in the UVM Class Reference is shown in
Table 1. The reader should reference the UVM Class Reference manual and review the
uvm_comparer section.

compare field Compares two integral values.

This method is the same as compare field except that the arguments are
small integers, less than or equal to 64 bits.

This method is the same as compare field except that the arguments are
real numbers.

Compares two class objects using the policy knob to determine whether
the comparison should be deep, shallow, or reference.

compare_field int

compare field real

compare_object

compare string Compares two string variables.
Causes the error count to be incremented and the message, msg, to be
print_msg appended to the miscompares string (a newline is used to separate
messages).

Table 1 - uvm_comparer methods

8.13. do_methods & super.do_methods()

All of the empty, return-only do_methods () in the uvm_object base class mean that it is not
necessary to ever call super.do _methods () from a transaction class that directly extends the
uvm_sequence_item. The empty calls probably do no harm aside from potential minimal
simulation efficiency issues related to calling empty void functions.

The default do_compare () method returns 1 because calls to super.do compare () are typically
and-ed with other comparison expressions, so if calling super.do compare () returned empty or
o-values, the compare method would always fail.

If the user-define transaction class is extended, then it becomes very important to call
super.do_methods () to execute deep actions, such as deep-copy and deep-compare.

SNUG 2014 37 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

8.14. Templates with do_methods()

Coding the required do_methods () from scratch can be daunting, but large amounts of the
do_methods () can be easily placed into a template file, which makes implementing the standard
transaction methods using the do_methods () a relatively easy task. I use the transi template
file shown in Figure 38 as a starting point for my UVM testbench transactions.

class transl extends uvm sequence item;
// (1) Register class with factory |
“uvm object utils(transl)

// (2) Declare variables & covergroups | (if any)
logic [15:0] dout; // outputs not randomized

rand bit [15:0] din;

rand bit rst n;

// (5) Standard new() constructor

function new (string name="transl");
super.new (name) ;

endfunction

// (11) Common component & trans methods | (if any)
function void do copy(uvm object rhs);
transl tr;
if (1$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do copy() cast")
// super.do copy(rhs); // if extending an existing transaction
// copy the transaction variables. Example:

dout = tr.dout;

din = tr.din;

rst n = tr.rst n;
endfunction

function bit do compare(uvm object rhs, uvm comparer comparer) ;
transl tr;
bit eq;
if (1$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do compare() cast")
// super.do compare(rhs, comparer); // if extending a transaction
// compare the transaction output variables. Example:

eq = super.do compare(rhs, comparer);
eq &= (dout === tr.dout);
return (eq) ;

endfunction

function void do print(uvm printer printer);
$display ("\n\n\t\t*** print() and sprint() are not implemented ",
"for this transaction type ***\n\n");
endfunction

function string input2string();
return ($sformatf ("din=%4h rst n=%b", din, rst n));
endfunction

function string output2string();
return($sformatf ("dout=%4h", dout));
endfunction

SNUG 2014 38 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

function string convert2string();

return ($sformatf ({input2string(), " ", output2string()}));
endfunction
endclass

Figure 38 - Example trans1.sv template file with do_copy() & do_compare() templates

All of the proper overhead declarations for the transaction handles and $casting have been
captured in this transl.sv template file, making it relatively easy to code the proper
do_methods () for this transaction. This template happens to be a fully coded transaction class
for a 16-bit, asynchronously resettable register.

SNUG 2014 39 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

9. Field macros

As previously mentioned and as shown in Figure 39, the second technique for defining all of the
standard transaction methods is to declare the class data fields using field macros. Declaring the
data fields using the built-in field macros is certainly easier to do than to redefine the
do_methods (), but the trade-off is simulation efficiency (see the section on Benchmarks for
more details). The UVM Users Guide written by Cadence recommends the use of the field
macros while Mentor developers discourage their use due to code expansion and simulation
inefficiencies. Many users like to use the field macros because of their simplicity.

Defining Standard Transaction Method
behavior using field macros

Call Never override these
-1 these |-{ Standard Transaction Methods

copy ()

compare () Field macros contribute

5 | to these methods
rprint() e

sprint () ‘uvm_object utils begin()
| T~ ‘um field int(.)

i pack () | "uvm field int(..)

i pack_bytes () ‘— ‘uvm_field enum(..)
pack_ints() ‘uvm field string(..)
unpack () ‘_uvm_object_utils_end

unpack bytes ()

unpack ints

record()
' Field macros do not build

«— convert2string()

Figure 39 - Creating the standard transaction methods by using the UVM field macros

Rule: when using field macros, it is required to declare the transaction variables before they are
specified in field macros.

Rule: when using field macros, the variables are declared before the registration of the
transaction with the factory.

SNUG 2014 40 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Rule: when using field macros, you must register the transaction with the factory using the
“uvm_object utils begin() / “uvm object utils end macros.

Note that even though variables can be declared in groups, as was done with the output variables
a-e and the input variables g-k of Figure 40, the field macro declarations for these variables must
include a unique ~uvm field int declaration for each separate variable.

class transl extends uvm sequence item;
bit [7:0] a, b, ¢, 4, e; // outputs
rand bit [2:0] g, h, i, j, k; // inputs

“uvm _object utils begin(transl)
“uvm_ field int(a, UVM ALL ON)
“uvm_field int(b, UVM_ALL_ON)
“uvm field int(c, UVM_ALL_ON)
“uvm field int(d, UVM_ALL_ON)
“uvm field int(e, UVM ALL ON)
“uvm_field int (g, UVM ALL_ON)
“"uvm_field int(h, UVM_ALL_ON)
“uvm field int (i, UVM_ALL_ON)
“uvm field int(j, UVM ALL ON)
“uvm field int(k, UVM ALL ON)

“uvm _object utils end

function new (string name="transl");
super.new (name) ;
endfunction

endclass

Figure 40 - Creating the standard transaction methods by using the field macros

Trying to combine the variables into grouped field macro declarations as shown in Figure 41
causes a compilation error to occur (VCS error message shown at the bottom of Figure 41).

“include "uvm macros.svh"
import uvm pkg::*;

class transl extends uvm sequence item;
bit [7:0] a, b, ¢, 4, e; // outputs
rand bit [2:0] g, h, i, j, k; // inputs

“uvm _object utils begin(transl)
“uvm field int(a, b, ¢, d, e, UVM ALL ON) // Error on this line
“uvm field int(g, h, i, j, k, UVM ALL ON)

“uvm object utils end

function new (string name="transl");
super.new (name) ;
endfunction
endclass

// transl error2.sv, 9

SNUG 2014 41 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

// Macro argument number mismatch for macro 'uvm field int'
// "transl error2.sv", 9: token is ')
// “uvm field int(a, b, ¢, d, e, UVM ALL ON)

Figure 41 - ERROR - combining variables into a single field macro - VCS error shown

A logical follow-up question is, can we concatenate multiple variables into a single concatenated
unit within a field macro declaration as shown in Figure 42? The answer is still no, and the
resultant syntax error from VCS is also shown at the bottom of Figure 42.

“include "uvm macros.svh"
import uvm pkg::*;

class transl extends uvm sequence item;
bit [7:0] a, b, ¢, 4, e; // outputs
rand bit [2:0] g, h, i, j, k; // inputs

“uvm_object utils begin(transl)
“uvm field int({a, b, ¢, 4, a}, UVM ALL ON) // Error on this line
“uvm field int({g, h, i, j, k}, UVM ALL ON)

“uvm object utils end

function new (string name="transl");
super.new (name) ;
endfunction
endclass

// Error-[SE] Syntax error

// Following Verilog source has syntax error
// "transl error3.sv", 9 (expanding macro): token is '{'
// “uvm_field int({a, b, ¢, 4, a}, UVM ALL ON) // Error on this line

Figure 42 - ERROR - concatenating variables into a single field macro - VCS error shown

Rule: when using field macros, each variable must be declared with a separate field macro.
Variables cannot be grouped into a common field macro definition.

9.1. Field macro types

The most common field data type used in transactions is an integral numeric type (bits, vectors,
buses, etc.), which requires declarations to be made with the “uvm field int () macro. There
are certainly many other data types that can be used in a transaction.

To accommodate the multiple possible field types, UVM provides 35 field macros that can be
used with the corresponding data types and all 35 have been defined in the file:
uvm/src/macros/uvm_sequence defines.svh.

SNUG 2014 42 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Data declarations - field macro types

“uvm field int (ARG, FLAG)

“uvm_field enum (T, ARG, FLAG)
“uvm_field object (ARG, FLAG) Commonly
“uvm field string (ARG, FLAG) used
"uvm_field real (ARG, FLAG)

“uvm field event (ARG, FLAG)

“uvm field sarray int (ARG, FLAG)

“uvm field sarray enum (ARG, FLAG) Static
"uvm_field sarray object (ARG, FLAG) array
“uvm field sarray string (ARG, FLAG)

"uvm field array int (ARG, FLAG)

“uvm field array enum (ARG, FLAG) Dynamic
“uvm field array object (ARG, FLAG) array
"uvm field array string (ARG, FLAG)
"uvm_field queue int (ARG, FLAG)

"uvmm_field queue enum (ARG, FLAG) Queues
“uvm field queue object (ARG, FLAG)
"uvm_field queue string (ARG, FLAG)
"uvm_field aa string int (ARG, FLAG) String

"uvm field aa string string

(ARG, FLAG)

assoc. array

"uvm_field aa object int
"uvmmn_field aa object string

(ARG, FLAG)
(ARG, FLAG)

Class object
assoc. array

"uvm field aa int int

"uvmm_field aa int int unsigned

"uvm field aa int integer

"uvm_field aa int integer unsigned

“uvm_field aa int byte

"uvm_field aa int byte unsigned

"uvm_field aa int shortint

(ARG, FLAG)
(ARG, FLAG)
(ARG, FLAG)
(ARG, FLAG)
(ARG, FLAG)
(ARG, FLAG)
(ARG, FLAG)

"uvmm_field aa int shortint unsigned (ARG, FLAG)

“uvm field aa int longint

"uvm _field aa int longint unsigned

"uvm field aa int string
“uvm field aa int key
"uvmm_field aa int enumkey

(ARG, FLAG)
(ARG, FLAG)
(ARG, FLAG)

(KEY, ARG, FLAG)
(KEY, ARG, FLAG)

Number type
assoc. array

SNUG 2014
Rev 1.1

Table 2 - Field macros defined in UVM

43

UVM Transactions - Definitions,
Methods and Usage

I divide the 35 UVM field macros into seven categories as shown in Table 2:

The first 6 are the most commonly used field macros.

The next 4 are static array field macros.

The next 4 are one-dimensional dynamic array field macros.
The next 4 are queue field macros.

The next 2 are string associative array field macros.

The next 2 are class object field macros.

The last 13 are integral number associative array field macros.

32 of the field macro take two arguments and three exception field macros require a third,
leading key-type argument (“uvm_field enum, “uvm field aa int_ key and

“uvm field aa int enumkey). In Table 2, ARG is the name of the variable assigned to the
field macro and FLAG specifies which standard transaction methods will be built for each field.
As mentioned, enumerated type fields also require the corresponding T enumerated type, and
integral-number associative arrays that are keyed to a specific type require the KEY key-type or
enumerated-key-type.

9.2. Field macro flags

Field macro FLAG arguments are typically specified as either uvM_ALL ON or UVM_DEFAULT,
combined with flags that disable standard transaction method capabilities for specific variables.

On the former UVM World forum (now one of the forums on Accellera.org) I asked the UVM
community which they preferred to use, utvM_DEFAULT or uvM ALL oN and why[10].

Two of the responses summarized prevailing opinions. From Kathleen Meade, UVM expert at
Cadence:

My recommendation is to use UVM_DEFAULT instead of UVM_ALL ON even though
they both essentially do the same thing today. At some point the class library may add
another "bit-flag" which may not necessarily be the DEFAULT. If you use UVM_ALL ON
that would imply that whatever flag it is would be "ON".

A second and contrary opinion came from Ajeetha Kumari of CVC, India:

... we prefer ALL_ON to DEFAULT as it is more "explicit" in naming ... With DEFAULT -
it is possible that a newer version of UVM base code might change the definition of
default, and one (would need) to update the code!

Both opinions expressed on the UVM forum are reasonable approaches, but in practice, I prefer
to use the uvm_arnL_on since I believe it better documents the action performed by this flag.

A related question is, what is the difference between uvM_aALL on and uvm DEFAULT? To help
answer this question, it is worth examining definitions from the

SNUG 2014 44 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

uvm/src/base/uvm object globals.svh source code file. There are two back-to-back
sections in this file that shed some light and also introduce some confusion.

In the 23 lines of code shown in Table 3, it can be observed that there are 6 affirming field macro
parameters (UVM_DEFAULT to UVM_PACK), 5 negating field macro parameters (uvM_NOCOPY to

UVM NOPACK), 3 depth and reference field macro parameters, and 1 more parameter called
uvM_READONLY. Their supposed corresponding actions are shown with each parameter name.

// Parameter: “uvm field * macro flags

//

// Defines what operations a given field should be involved in.

// Bitwise OR all that apply.

//

// UVM_DEFAULT - All field operations turned on

// UVM_COPY - Field will participate in <uvm object::copy>

// UVM_COMPARE - Field will participate in <uvm object::compare>
// UVM_PRINT - Field will participate in <uvm object::print>

// UVM_RECORD - Field will participate in <uvm object::record>

// UVM_PACK - Field will participate in <uvm object::pack>

//

// UVM_NOCOPY - Field will not participate in <uvm object::copy>
// UVM _NOCOMPARE - Field will not participate in <uvm object::compare>
// UVM_NOPRINT - Field will not participate in <uvm object::print>
// UVM _NORECORD - Field will not participate in <uvm object::record>
// UVM_NOPACK - Field will not participate in <uvm object::pack>
//

// UVM_DEEP - Object field will be deep copied

// UVM_SHALLOW - Object field will be shallow copied

// UVM_REFERENCE - Object field will copied by reference

//

// UVM_READONLY - Object field will NOT be automatically configured.

Table 3 - UVM field macro flag parameters defined in base/uvm_object_globals.svh

The Table 3 of parameter definitions does not appear in the UVM Reference Manual for three
good reasons, (1) the list is incomplete (missing UvM ALL ON, UVM PHYSICAL, UVM ABSTRACT),
(2) most of the affirming field macro parameters do nothing when put into user field macro
definitions, and (3) the DEEP, SHALLOW and REFERENCE parameters are defined but
commented out and hence are inactive, as shown in Table 4.

The field macro parameter values make up a 17-bit, onehot FLAG-vector. It can be seen in the
Table 3 code that uvm DEFAULT and uvM ALIL ON both enable copy, compare, print, record and
pack operations (all of these bits are hot), but uvM DEFAULT also has the uvM DEEP bit set. So

will uvm DEFAULT fields do deep-copies while uvM aLL on fields only do shallow copies? The

answer is no! There are more details about the various field macro flag settings following Figure

43.
parameter UVM MACRO NUMFLAGS = 17;
//A=ABSTRACT Y=PHYSICAL
//F=REFERENCE, S=SHALLOW, D=DEEP
//K=PACK, R=RECORD, P=PRINT, M=COMPARE, C=COPY

YL AYFSD KR P M C
SNUG 2014 45 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

parameter UVM DEFAULT 'b000010101010101;

parameter UVM ALL ON = 'b000000101010101;
parameter UVM FLAGS ON = 'b000000101010101;
parameter UVM FLAGS OFF = 0;

//Values are or'ed into a 32 bit wvalue
//and externally

parameter UVM COPY = (1<<0);
parameter UVM NOCOPY = (1<<1);
parameter UVM COMPARE = (1<<2);
parameter UVM NOCOMPARE = (1<<3);
parameter UVM PRINT = (1<<4);
parameter UVM NOPRINT = (1<<5);
parameter UVM RECORD = (1<<6);
parameter UVM NORECORD = (1<<7);
parameter UVM_ PACK = (1<<8);
parameter UVM NOPACK = (1<<9);
//parameter UVM_DEEP = (1l<<10);
//parameter UVM_ SHALLOW = (1l<<11);
//parameter UVM_REFERENCE = (1<<12);
parameter UVM PHYSICAL = (1<<13);
parameter UVM ABSTRACT = (1<<14);
parameter UVM READONLY = (1<<15);
parameter UVM NODEFPRINT = (l<<16);

Table 4 - UVM field macro onehot flag settings in base/uvm_object_globals.svh

NODEFPRINT removed from Unused

uvm-1.1c documentation (commented out)
= 1T}
Z| 5|l52]0 w
HHHHHE R AR AR

UVM_param gL il A i 2 8 o % o
ol Els(E°l | 8| |8 |°
% | |29 O

Y B N N N §%

UVM_DEFAULT

o
o
o
o
o
o
[=]
o
=
o
=
o
=
o
=
o
=

UVM_ALL_ON »0|0|0|O0O|O|O|O|O0OfXT|0O}|2|0Of2 (0|1 |0|1
Bit 16 Bit 0

Figure 43- UVM field macro onehot flag settings diagram

From Table 4, it can be seen that uvM DEEP, UVM SHALLOW and UVM REFERENCE are all
commented out, and in practice. uvM_DEFAULT and uvM_ ALL_ON both perform deep operations.
Since there really are no active uvM_DEEP and UVM_SHALLON settings, UvM DEFAULT and
UvM_ALL_ON perform the exact same field operations.

SNUG 2014 46 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The next interesting observation is that when uvM_aLL on is selected and combined with
UVM_NoOCOPY, both the copy-hot bit and the nocopy-hot bit are enabled, but the negating flag
operations take precedence over the affirming flag operation.

There is one other interesting side effect from using negating flag settings. Quoting from the
UVM Class Reference Manual, from the Field Macros section:
Each ‘uvm_field * macro is named according to the particular data type it handles:
integrals, strings, objects, queues, etc., and each has at least two arguments: ARG and
FLAG.

ARG s the instance name of the variable, whose type must be compatible with the
macro being invoked. ...

FLAG ifsetto UVM _ALL ON, ... the ARG variable will be included in all data
methods. If FLAG is set to something other than UVM_ALL ON or
UVM_DEFAULT, it specifies which data method implementations will not
include the given variable. Thus, if FLAG is specified as NO_COMPARE,
the ARG variable will not affect comparison operations, but it will be
included in everything else.

The highlighted description for the FLAG argument leads to a rather surprising definition, which
is that turning off one flag actually enables all other flags even without specifying uvM ALL ON
or uvM_DEFAULT. The trans7 field macro definitions shown in Figure 44 actually enable

UvM ALL ON and then disable pack () for the a variable, disable copy () for the b-variable and
disable print () for the c-variable.

class trans7 extends uvm sequence item;
rand bit [7:0] a, b, c;

“uvm _object utils begin(trans7)
“"uvm_field int(a, UVM_NOPACK)
“uvm field int(b, UVM NOCOPY)
“uvm field int(c, UVM NOPRINT)

“uvm _object utils end

function new (string name="trans7");
super.new (name) ;

endfunction

“include "print trans.sv"
endclass

Figure 44 - Field macro flags implicitly enable UVM_ALL_ON

In practice and for code clarity, engineers should specify either uvM ALL ON or UVM DEFAULT
followed by off-flags in an |-separated list.

SNUG 2014 47 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Even though there are on-flags defined in the UVM class libraries, they do not appear to work as
expected. Specifying uvM_copry with no other flags actually turns on all of the other operations
(copy(),compare(),print(),pack(),unpack(),record())

The FLAG argument is frequently an or-separated list of flag settings but many industry
examples use a +-separated list of flag settings as shown in the trans2 definition of Figure 45

class trans2 extends uvm sequence item;
rand bit [7:0] a, b, c;

“uvm_object utils begin(trans2)
“uvm_field int(a, UVM ALL ON)
“uvm field int(b, UVM ALL ON + UVM NOCOPY)
“uvm_field int(c, UVM ALL ON)

“uvm _object utils end

function new (string name="trans2");
super.new (name) ;
endfunction

“include "print trans.sv"
endclass

Figure 45 - trans2 legally defined using multiple +-separated field macro flags

When the trans2 transaction is copied and compared using the test2 code from Figure 46, the
b-variable is intentionally not copied and the comparison for the b-variable fails, as can be seen
in the simulation output shown in Figure 47.

class test2 extends uvm test;
“uvm_component utils(test2)

function new (string name, uvm component parent);
super.new (name, parent);
endfunction

task run phase (uvm phase phase);
trans2 trl = trans2::type id::create("trl");
trans2 x1 trans2::type id::create("x1");

phase.raise objection(this) ;

if (!trl.randomize()) “uvm fatal ("FATALRAND", "trl Rand failed");
xl.copy(trl);

$display("-------------- \n\n") ;

“uvm_info("trl", trl.convert2string(),UVM MEDIUM) ;

“uvm_info("x1l ", xl.convert2string(),UVM MEDIUM) ;

if (x1.compare(trl)) “uvm info ("COMPARE" ,"x1 fields match trl fields",UVM MEDIUM)
else “uvm_error ("ERRORCMP", "x1 fields do NOT match trl fields")
$display ("\n\n-------------- ");
phase.drop objection(this) ;
endtask
endclass

Figure 46 - test2: copies and compares trans2 objects

SNUG 2014 48 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

UVM_INFO body run.sv(6) @ 0: uvm test top [trl] inputs:a=be b=93 c=44
UVM INFO body run.sv(7) @ 0: uvm test top [x1] inputs:a=be b=00 c=44
UVM _INFO @ 0: reporter [MISCMP] Miscompare for xl.b: lhs = 'hO : rhs = 'h93
UVM INFO @ 0: reporter [MISCMP] 1 Miscompare(s) for object trl@464 vs. x1@468
UVM_ERROR body run.sv(9) @ 0: uvm_test top [ERRORCMP] x1 fields do NOT match trl
fields

Figure 47 - test2 simulation output - b-variable comparison fails as expected

Selecting multiple flag settings with the |-separated list is a better option since it will not disable
a desired action if a flag setting is accidentally used more than once as specified on the b-
variable in Figure 48.

class trans3 extends uvm sequence item;
rand bit [7:0] a, b, c;

“uvm _object utils begin(trans3)
“"uvm_field int(a, UVM_ALL_ON)
“uvm_field int(b, UVM _NOCOPY | UVM ALL ON | UVM_NOCOPY)
“uvm field int(c, UVM ALL ON)

“uvm object utils end

function new (string name="trans3");
super.new (name) ;
endfunction

“include "print trans.sv"
endclass

Figure 48 - UVM_NOCOPY flag accidentally |-specified twice - nocopy remains active

Selecting multiple flag settings with the +-separated list is subject to hot-bit clearing if a desired
action flag setting is accidentally added more than once as specified on the b-variable in Figure
49.

class trans4 extends uvm sequence item;
rand bit [7:0] a, b, c;

“uvm _object utils begin(trans4)
“uvm_ field int(a, UVM ALL ON)
“uvm field int(b, UVM NOCOPY + UVM ALL ON + UVM NOCOPY) // Copies!!
“"uvm_field int(c, UVM_ALL_ON)

“uvm _object utils end

function new (string name="trans4");
super.new (name) ;

endfunction

“include "print trans.sv"
endclass

Figure 49 - UVM_NOCOPY flag accidentally +-specified twice - removing the nocopy setting
Guideline: when using field macros, enable multiple flag settings using an |-separated list, not
the +-separated list. This approach is safer if a flag setting is accidentally applied more than once.

SNUG 2014 49 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

9.3. Combining Field Macros with do_methods()

Is it possible to code some of the standard transaction methods partially using field macros and
the other parts manually coded into do_methods ()? The short answer is yes, but the correct
answer (to avoid confusion) is the two styles should not be mixed in the same transaction class

definition.

The mixing of field macros and do_methods () would most likely occur if a base transaction
class were defined using field macros and an extended transaction class were defined using
do methods (). The trans8b base class uses field macros while the extended transaction class,

transs8, overrides do_copy () and do_compare () methods as shown in Figure 50.

class trans8b extends uvm sequence item;
rand bit [7:0] a, b;

“uvm _object utils begin(trans8b)

“uvm_field int(a, UVM_ALL_ON)

“uvm field int(b, UVM ALL ON | UVM NOCOPY)
“uvm _object utils end

function new (string name="trans8b") ;
super.new (name) ;
endfunction
endclass

class trans8 extends trans8b;
“uvm _object utils(transs8)
rand bit [7:0] c;

function new (string name="trans8");
super.new (name) ;
endfunction

function void do copy(uvm object rhs);
trans8 tr;
if (!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do copy() cast")
super.do copy (rhs) ;
c = tr.c;
endfunction

function bit do compare(uvm object rhs, uvm comparer comparer) ;
trans8 tr;

bit eq;
if (!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do compare() cast")
eq = super.do compare(rhs, comparer);
eq &= (¢ == tr.c); // Compare outputs
return (eq) ;
endfunction

“include "print trans.sv"

endclass
Figure 50 - trans8b base with field macros extended in trans8 with do_methods()
SNUG 2014 50 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The trans8 extended class inherits the a and b variables with field macros. Calling the copy ()
method for an extended trans8 object first executes the copy operations for variables defined
with field macros, then completes the copy () operation by calling the do_copy () method. The
extended trans8 do_copy () method calls an empty inherited do_copy () method, which does
nothing in the example in Figure 50.

Guideline: do not define field macros and override the corresponding do_methods () for the
same standard transaction method in the same transaction class.

For instance, if a do_method () is defined for one of the standard transaction methods, then the
method should be explicitly excluded from the field macros by setting the corresponding
exclusion flag.

10. Benchmarks

Adam Erickson claimed that the do_methods () were more efficient both in code expansion and
in simulation efficiency. Is that true?

I concede from Adam's paper that code expansion efficiency significantly favors implementation
of the standard transaction methods using do_methods (), but I decided to try running some
benchmarks to prove or disprove Adam's claim about simulation efficiency.

Benchmarking can be tricky and needs to be specified in a way that can be repeated and give
reasonable information. I ran the benchmarks using the latest simulators from two different
vendors . Both simulators used built-in versions of UVM version 1.1d. The benchmark results
will not report relative speeds between the vendor's simulators, since those numbers are highly
dependent on the types of constructs used, but will report the relative percentage differences in
simulation efficiency for each simulator when using different coding styles. The goal is to show
users which coding styles will give the best results for all simulators.

10.1. Benchmarking methodology

The first benchmarks were run on a full UVM testbench environment with DUT but showed very
little efficiency differences. Due to all the UVM activity within the full testbench environment,
the efficiencies related to field macros versus do_methods () were largely masked. I then
determined that I needed to isolate the standard transaction methods as much as possible, so the
second set of benchmarks were done with just a test component with a tight loop that would
repeatedly randomize, copy and compare transactions. The full top.sv, test.sv, tb_pkg files and
transaction files are shown in the Appendix B.

The run phase () test loop was run on one simulator using two different CNT values of 10-
million and 100-million (I wanted to make sure that the efficiencies of the loop would not be
overshadowed by startup and shutdown activities in the test). Then for comparison purposes, the

SNUG 2014 51 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

same code with CNT equal to 10-million was run on a second simulator. The run phase () code
of the testl component is shown in Figure 51.

task run phase (uvm phase phase);
transl trl = transl::type id::create("trl");

transl x1 = transl::type id::create("x1l");
[/ mm e e e e e e
phase.raise objection(this) ;
$display("-------------- \n\n") ;

repeat ("CNT) begin
if (!trl.randomize()) “uvm fatal ("FATALRAND", "trl Rand failed");
x1l.copy(trl);
if (x1l.compare(trl)) PASS (trl);

else ERROR (trl, x1);
end
$display("\n\n-------------- ") ;
phase.drop objection(this);
endtask

Figure 51 - Benchmark testl.sv run_phase() with randomize(), copy() and compare() loop

The transaction files were built using either do_methods () or field macros. Each transaction file
included a common block of code as shown in Figure 52.

class transl extends uvm sequence item;

// uvm object utils macro, data declarations
// field macros if used

function new (string name="transl");
super.new (name) ;
endfunction

// do_copy() & do compare() methods if required

function string input2string();
return ($sformatf ("g=%2h h=%2h i=%2h j=%2h k=%2h",
g, h, i, jl k));
endfunction

function string output2string();
return ($sformatf ("a=%2h b=%2h c¢=%2h d=%2h e=%2h",
a, b, c, d, e));
endfunction

function string convert2string();

return ({"Inputs: ", input2string(), " ",
"Outputs: ", output2string()});
endfunction
endclass

Figure 52 - Common benchmark trans1 code

SNUG 2014 52 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Each test was compiled once, and then run five times to gather data that could be averaged for
comparison purposes. The script to compile and run the first trans1 benchmark test is shown in
Figure 53. Similar scripts exist for each transi-coding benchmark variation.

ves -sverilog -ntb opts uvm -timescale=lns/lns -f runla.f

/usr/bin/time -f "transla: no rand output - uses do methods() - no field
macros - simulation time %U" \

-o logla 1l.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transla: no rand output - uses do methods() - no field
macros - simulation time %U" \

-o logla 2.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transla: no rand output - uses do methods() - no field
macros - simulation time %U" \

-o logla 3.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transla: no rand output - uses do methods() - no field
macros - simulation time %U" \

-o logla 4.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transla: no rand output - uses do methods() - no field
macros - simulation time %U" \

-o logla 5.vcs simv +UVM TESTNAME=testl
cat logla *.vcs

Figure 53 - Benchmark script to run the first transactions five times

The script in Figure 53 shows string-text that wraps but in the actual script file the strings do not
wrap.

10.2. Benchmarking do_methods() with nonrand-outputs and rand-outputs

Reminder: when implementing a transaction with the do_methods () the “uvm object utils()
macro must be used.

The first transaction highlights, as shown in Figure 54, included:
(1) “uvm _object utils() macro
(2) 5 non-rand, 8-bit, data outputs
(3) 5 rand, 8-bit, data inputs
do copy ()and do_compare () methods that called super.methods ()

The second benchmark transaction was identical to the first but also randomized the outputs. As
mentioned earlier, there is no reason to randomize outputs since they will not be used. Will
randomized outputs significantly impact simulation performance?

“uvm_object utils(transl)

bit [7:0] a, b, ¢, d, e; // outputs
rand bit [2:0] g, h, i, j, k; // inputs

function void do copy(uvm object rhs);
transl tr;
if(!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do copy() cast")

SNUG 2014 53 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

super.do copy (rhs) ;

{a, b, ¢, 4, e} = {tr.a, tr.b, tr.c, tr.d, tr.e};

{g, h, i, j, k} = {tr.g, tr.h, tr.i, tr.j, tr.k};
endfunction

function bit do compare(uvm object rhs, uvm comparer comparer) ;
transl tr;
bit eq;
if (!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do compare() cast")

eq = super.do compare(rhs, comparer);
eq &= (a == tr.a);
eq &= (b == tr.b);
eq &= (c == tr.c);
eq &= (d == tr.d);
eq &= (e == tr.e);
eq &= (g == tr.g);
eq &= (h == tr.h);
eq &= (i == tr.i);
eq &= (j == tr.j);
eq &= (k == tr.k);
return (eq) ;
endfunction

Figure 54 - First benchmark trans1 with non-rand outputs and do_methods()

Simulation results - needless randomization of the 5 output variables added simulation time as
follows:

e Simulator A with CNT=10,000000: required 10.5% more simulation time

e Simulator A with CNT=100,000000: required 15.2% more simulation time

e Simulator B with CNT=10,000000: required 24.8% more simulation time

Clearly, one should not needlessly randomize variables that will not be used.

10.3. Benchmarking field macros with nonrand-outputs and rand-outputs

Reminder: when implementing a transaction with field macros the
“uvm_object_utils_begin() /_end macros must be used.

The third transaction highlights, as shown in Figure 55, included:
(1) 5 non-rand, 8-bit, data outputs
(2) 5 rand, 8-bit, data inputs
(3) “"uvm_object utils begin() macro
(4) “uvm_field int macros with uvM ALL ON
(5) “uvm _object utils end

The fourth benchmark transaction was identical to the third but also randomized the outputs. As
mentioned earlier, there is no reason to randomize outputs since they will not be used. Again,
will randomized outputs significantly impact simulation performance?

SNUG 2014 54 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

bit [7:0] a, b, ¢, 4, e; // outputs
rand bit [2:0] g, h, i, j, k; // inputs

“uvm _object utils begin(transl)
“"uvm_field int(a, UVM_ALL_ON)
“uvm field int(b, UVM ALL ON)
“uvm field int(c, UVM ALL ON)
“uvm field int(d, UVM ALL ON)
“uvm_field int(e, UVM ALL ON)
“"uvm_field int(g, UVM_ALL_ON)
“uvm field int(h, UVM ALL ON)
“uvm field int (i, UVM ALL ON)
“uvm field int(j, UVM ALL ON)
“uvm field int(k, UVM ALL ON)

“uvm_object utils end

Figure 55 - Third benchmark trans1 with non-rand outputs and field macros

Simulation results - needless randomization of the 5 output variables added simulation time as
follows:

e Simulator A with CNT=10,000000: required 10.0% more simulation time

e Simulator A with CNT=100,000000: required 10.2% more simulation time

e Simulator B with CNT=10,000000: required 14.2% more simulation time

Clearly, one should not needlessly randomize variables that will not be used.
Benchmarking do_methods () versus field macros

In addition to comparing rand versus non-rand outputs, simulation times were measured between
do_method () and field macro versions to the transil transactions (using the non-randomized
outputs versions).

Simulation results - do_method () versions of the transl transaction were more simulation
efficient than the equivalent field macro versions of the transi transaction. The added
simulation time penalty for using the field macro versions were as follows:

e Simulator A with CNT=10,000000: required 4.5% more simulation time

e Simulator A with CNT=100,000000: required 6.4% more simulation time

e Simulator B with CNT=10,000000: required 94.7% more simulation time

As can be seen from the results, the do_method () version of the standard transaction methods is
more simulation efficient than the equivalent field macro version. This is especially true using
Simulator B where the measured penalty for using the field macros was 94.7% of additional
simulation time.

Benchmarking do _methods () versus do _methods () without super.do_methods

As was previously mentioned, it is not necessary to call super.do_copy () and
super.do compare () for transactions that are extended from the uvm_sequence item base

SNUG 2014 55 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

class. The reason was that the do_copy () and do_compare () methods in the base class were
almost empty methods. So is there a penalty for calling the empty super.do copy () and
super.do compare () methods? The answer is yes.

Simulation results - do_method () versions of the transl transaction that did not call the
super.do_methods were more simulation efficient than the equivalent transactions that called
the super.do methods. The added simulation time penalty for calling the empty
super.do_method () versions were as follows:

e Simulator A with CNT=10,000000: required 4.8% more simulation time

e Simulator A with CNT=100,000000: required 2.6% more simulation time

e Simulator B with CNT=10,000000: required 2.2% more simulation time

As can be seen from the results, calls to the empty super.do method () versions is less
simulation efficient than omitting the super.do method () calls. Minor simulation speedups can
be achieved by omitting the super.do method () calls when they are unnecessary.

11. Summary & Conclusions

Classes are the preferred construct to represent transaction data because they are basically
dynamic, ultra-flexible structs that can be easily randomized, easily control the randomization,
and be created whenever they are needed.

The uvm_sequence itemand int class parameter types that are found in the UVM Base Class
Library (BCL) are just placeholders that you will never use. Most of your testbench classes will
be parameterized to the transl (or name of your choice) transaction type, which is derived
from the uvm sequence item type.

Using a standard class formatting style as shown in Figure 2, Figure 3 and Figure 4 makes it
easier for users (and yourself) to understand and use your testbench component and transaction
class implementations.

Rule: when using field macros, it is required to declare the transaction variables before they are
specified in field macros.

Rule: when using field macros, the variables are declared before the registration of the
transaction with the factory.

Rule: when using field macros, you must register the transaction with the factory using the
“uvm object utils begin() / “uvm object utils end Macros.

Rule: when using do_methods (), you must register the transaction with the factory using the
‘uvm_object_utils () macro.

Rule: when using field macros, each variable must be declared with a separate field macro.
Variables cannot be grouped into a common field macro definition.

SNUG 2014 56 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

Guideline: do not directly override the copy (), compare () and other uvm object base class
standard transaction methods.

Guideline: never manually implement the create () method. Call the “uvm object utils()
macro to automatically implement the create () method.

Guideline: Every user-defined transaction method should include a convert2string () method.

Guideline: Avoid using the print () method. Its output is verbose and cannot be suppressed by
using UVM verbosity settings.

Guideline: Avoid using the sprint () method. Its output is verbose.

Guideline: If you do use one of the built-in printing methods, choose sprint () over print ()
and call it from a UVM message macro. Runtime verbosity settings can mask verbose sprint ()
method printouts if desired.

Guideline: Define and use the convert2string () method discussed in earlier sections.
convert2string () is more simulation efficient, more print-space efficient and can be easily
suppressed by using different runtime UVM verbosity settings.

There are additional guidelines included throughout the paper, but following these rules and
guidelines are the current Best Known Methods for using UVM transactions.

12. Acknowledgements

I am grateful to my colleague Stuart Sutherland for his exhaustive review of this paper, for
identifying errors and suggesting improvements to the content and flow of this paper. I am also
grateful to my colleague Heath Chambers for identifying sections that could be merged to
improve the flow of this paper.

13. References:

[1] Adam Erickson, "Are OVM & UVM Macros Evil? A Cost-Benefit Analysis," DVCon 2011. Copy
can also be requested at: http://www.mentor.com/products/fv/verificationhorizons/horizons-jun-11

[2] Clifford E. Cummings, "OVM/UVM Scoreboards - Fundamental Architectures," SNUG-SV 2013 -
www.sunburst-design.com/papers/CummingsSNUG2013SV_UVM_ Scoreboards.pdf

[3] Dave Rich, Tom Fitzpatrick - Mentor UVM Experts - personal communication

[4] Kathleen A. Meade, Sharon Rosenberg, A Practical Guide to Adopting the Universal Verification
Methodology (UVM), Second Edition, ISBN 978-1-300-53593-5. Published 2013

[5] Kathleen A. Meade, Sharon Rosenberg - Cadence UVM Experts - personal communication

[6] OVM User Guide, March 2010, Available for download from:
https://verificationacademy.com/forums/downloads/ovm/uvm-download-kits

SNUG 2014 57 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

[71 Universal Verification Methodology (UVM) 1.1 Class Reference, May 2011, Accellera, Napa, CA.
www.accellera.org/downloads/standards/uvm

[8] Universal Verification Methodology (UVM) 1.1 Users Guide, May 18, 2011, Accellera, Napa, CA.
www.accellera.org/downloads/standards/uvm

[9] UVM (Universal Verification Methodology) Forum - Accellera Systems Initiative Forums,
http://forums.accellera.org/topic/99 1-uvm-all-on-vs-uvm-default/?hl=uvm_default

[10] UVM_DEFAULT -vs- UVM_ALL ON,
http://forums.accellera.org/topic/991-uvm-all-on-vs-uvm-default/?hl=uvm default

[11] Vanessa R. Cooper, Getting Started with UVM: A Beginner's Guide, ISBN-10: 0615819974 |
ISBN-13: 978-0615819976, Published 2013

[12] Verification Academy, https://verificationacademy.com/

14. AUTHOR & CONTACT INFORMATION

Cliff Cummings, President of Sunburst Design, Inc., is an independent EDA consultant and
trainer with 32 years of ASIC, FPGA and system design experience and 23 years of
SystemVerilog, synthesis and methodology training experience.

Mr Cummings has presented more than 100 SystemVerilog seminars and training classes in the
past nine years and was the featured speaker at the world-wide SystemVerilog NOW! seminars.

Mr Cummings has participated on every IEEE & Accellera SystemVerilog, SystemVerilog
Synthesis, SystemVerilog committee, and has presented more than 40 papers on SystemVerilog
& SystemVerilog related design, synthesis and verification techniques.

Mr Cummings holds a BSEE from Brigham Young University and an MSEE from Oregon State
University.

Sunburst Design, Inc. offers World Class Verilog & SystemVerilog training courses. For more
information, visit the www.sunburst-design.com web site.
Email address: cliffc@sunburst-design.com

Last Updated: March 31, 2014

SNUG 2014 58 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

15. Appendix A

15.1. UVM classes parameterized to uvm_sequence _item

Many of the UVM base classes are parameterized classes, also known as specializations of
classes. UVM version 1.1d includes eight base classes that are parameterized to the
uvm_sequence_item type as shown in Figure 56. Seven of the base classes are component

classes and the eighth is the sequence base class

File: comps/uvm driver.svh
uvm_driver # (type

File: comps/uvm push driver.svh
uvm_push driver # (type

File: seq/uvm push sequencer.svh
uvm_push sequencer # (type

File: seq/uvm_sequence.svh
uvm_sequence # (type

File: seq/uvm sequence library.svh
uvmm_sequence library # (type

File: seq/uvm_ sequencer.svh
uvm_sequencer # (type

File: seq/uvm sequencer analysis fif
uvm_sequencer analysis fifo #(type

REQ =

REQ =

REQ =

REQ =

REQ =

REQ =

o.svh
RSP =

File: seq/uvm_sequencer param base.svh

uvm_sequencer param base _#(type

REQ =

uvm_sequence item, ...)
uvm_ sequence item, ...)
uvm_sequence item, ...)
uvm_sequence item, ...)
uvm sequence item, ...)
uvm_sequence item, ...)
uvm_sequence item)
uvm_sequence item, ...)

Figure 56 - UVM classes parameterized to the uvm_sequence_item type

15.2. UVM classes parameterized to int

Many of the UVM base classes are parameterized classes, also known as specializations of
classes. UVM version 1.1d includes 69 base classes that are parameterized to the int type as

shown in Figure 57.

File: base/uvm config db.svh
uvm_config db

File: base/uvm queue.svh
uvm_gqueue

File: base/uvm_resource.svh
uvm_resource

File: base/uvm _spell chkr.svh
uvm_spell chkr

SNUG 2014 59
Rev 1.1

(type

(type

(type

(type

T=int)

T=int)

T=int)

T=int)

UVM Transactions - Definitions,
Methods and Usage

File: comps/uvm in order comparator.svh
uvm_in order built in comparator #(type T=int)
uvm_in order class comparator # (type T=int)

File: comps/uvm policies.svh

uvm built in comp # (type T=int)
uvm built in converter # (type T=int)
uvm built in clomne # (type T=int)
uvm_class comp # (type T=int)
uvm_class converter # (type T=int)
uvm _class clone # (type T=int)

File: comps/uvm subscriber.svh
uvm_subscriber # (type T=int)

File: macros/uvm tlm defines.svh

uvm_blocking put imp~ “SFX # (type T=int, type IMP=int)
uvm_nonblocking put imp~ “SFX # (type T=int, type IMP=int)
uvm_put imp~ “SFX # (type T=int, type IMP=int)
uvm_blocking get imp~ “SFX # (type T=int, type IMP=int)
uvm_nonblocking get imp~ “SFX # (type T=int, type IMP=int)
uvm _get imp~ “SFX #(type T=int, type IMP=int)
uvm_blocking peek imp~ “SFX # (type T=int, type IMP=int)
uvm_nonblocking peek imp~ “SFX # (type T=int, type IMP=int)
uvm_peek imp~ "SFX # (type T=int, type IMP=int)
uvmm_blocking get peek imp~ "SFX # (type T=int, type IMP=int)
uvm_nonblocking get peek imp~"SFX #(type T=int, type IMP=int)
uvm_get peek imp~ “SFX #(type T=int, type IMP=int)
uvm_analysis imp~ “SFX # (type T=int, type IMP=int)

File: tlml/uvm analysis port.svh

uvm_analysis imp # (type T=int, type IMP=int)
uvm_analysis export # (type T=int)
uvm_analysis port # (type T=int)

File: tlml/uvm exports.svh

uvm_blocking put export # (type T=int)
uvm nonblocking put export # (type T=int)
uvm_put export # (type T=int)
uvm_blocking get export # (type T=int)
uvm_nonblocking get export # (type T=int)
uvm_get export # (type T=int)
uvm _blocking peek export # (type T=int)
uvm_nonblocking peek export # (type T=int)
uvm_peek export # (type T=int)
uvm_blocking get peek export # (type T=int)
uvm nonblocking get peek export # (type T=int)
uvm get peek export # (type T=int)

File: tlml/uvm imps.svh

uvm _blocking put imp # (type T=int, type IMP=int)
uvm _nonblocking put imp # (type T=int, type IMP=int)
uvm _put imp # (type T=int, type IMP=int)
uvm _blocking get imp # (type T=int, type IMP=int)
uvm_nonblocking get imp # (type T=int, type IMP=int)
uvm _get imp #(type T=int, type IMP=int)
SNUG 2014 60 UVM Transactions - Definitions,

Rev 1.1 Methods and Usage

uvm _blocking peek imp # (type T=int, type IMP=int)

uvm_nonblocking peek imp # (type T=int, type IMP=int)
uvm_peek imp # (type T=int, type IMP=int)
uvm _blocking get peek imp # (type T=int, type IMP=int)
uvm_nonblocking get peek imp # (type T=int, type IMP=int)
uvm_get peek imp # (type T=int, type IMP=int)

File: tlml/uvm ports.svh

uvm blocking put port # (type T=int)
uvm_nonblocking put port # (type T=int)
uvm_put port # (type T=int)
uvm_blocking get port # (type T=int)
uvmm_nonblocking get port # (type T=int)
uvm _get port # (type T=int)
uvm_blocking peek port # (type T=int)
uvm_nonblocking peek port # (type T=int)
uvm_peek port # (type T=int)
uvm_blocking get peek port # (type T=int)
uvm _nonblocking get peek port # (type T=int)
uvm_get peek port # (type T=int)

File: tlml/uvm tlm fifo base.svh
uvm tlm fifo base # (type T=int)

File: tlml/uvm tlm fifos.svh
uvm_tlm analysis fifo # (type T=int)
uvm_tlm fifo # (type T=int)

File: tlm2/uvm tlm2 generic payload.svh
uvm_tlm extension # (type T=int)

Figure 57 - UVM classes parameterized to the int type

SNUG 2014 61 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

16.

16.1.

This section contains the files that were used to run the simulations referenced in the Benchmarks
section. There were six different transil transaction coding styles tested. Example 1- Example 12 are

Appendix B

Benchmark files to test simulation efficiency

the tb_pkgl[a-f].sv files and runi[a-£]. £ files used by the benchmark simulations.

“include "uvm macros.svh"
package tb pkg;
import uvm pkg::*;
“include "transla.sv"
“include "testl.sv"
endpackage

Example 1 - File: tb_pkgla.sv

“include "uvm macros.svh"
package tb pkg;
import uvm pkg::*;
“include "transld.sv"
“include "testl.sv"
endpackage

tb pkgla.sv
top.sv

Example 7 - File: tb_pkgld.sv

Example 2 - File: runla.f

tb pkgld.sv
top.sv

“include "uvm macros.svh"
package tb pkg;
import uvm pkg::*;
“include "translb.sv"
“include "testl.sv"
endpackage

Example 8 - File: runld.f

Example 3 - File: tb_pkglb.sv

“include "uvm macros.svh"
package tb pkg;
import uvm pkg::*;
“include "transle.sv"
“include "testl.sv"
endpackage

tb pkglb.sv
top.sv

Example 9 - File: tb_pkgle.sv

Example 4 - File: runlb.f

tb pkgle.sv
top.sv

“include "uvm macros.svh"
package tb pkg;
import uvm pkg::*;
“include "translc.sv"
“include "testl.sv"
endpackage

Example 10 - File: runle.f

Example 5 - File: tb_pkglc.sv

“include "uvm macros.svh"
package tb pkg;
import uvm pkg::*;
“include "translf.sv"
“include "testl.sv"
endpackage

tb pkglc.sv
top.sv

Example 11 - File: tb_pkglf.sv

Example 6 - File: runlc.f

SNUG 2014
Rev 1.1

62

tb pkglf.sv
top.sv

Example 12 - File: runlf.f

UVM Transactions - Definitions,
Methods and Usage

Each benchmarked transaction was first compiled and then simulated five times. The average of the
five simulation runs were compared to other transaction simulations.

ves -sverilog -ntb_opts uvm -timescale=1lns/lns -£f runla.f
/usr/bin/time -f "transla: no rand output - uses do_methods() - no field macros - simulation time %U" \
-o logla l.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transla: no rand output - uses do methods() - no field macros - simulation time %U" \
-o logla 2.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transla: no rand output - uses do methods() - no field macros - simulation time %U" \
-o logla 3.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transla: no rand output - uses do_methods() - no field macros - simulation time %U" \
-o logla 4.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transla: no rand output - uses do methods() - no field macros - simulation time %U" \
-o logla 5.vcs simv +UVM TESTNAME=testl
cat logla*.vcs
Example 13 - File: doitla.ves
ves -sverilog -ntb_opts uvm -timescale=lns/lns -f runlb.f
/usr/bin/time -f "translb: rand output - uses do_methods() - no field macros - simulation time %U" \
-0 loglb_l.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translb: rand output - uses do methods() - no field macros - simulation time %U" \
-o loglb 2.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translb: rand output - uses do_methods() - no field macros - simulation time %U" \
-o loglb_3.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translb: rand output - uses do_methods() - no field macros - simulation time %U" \
-0 loglb 4.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translb: rand output - uses do _methods() - no field macros - simulation time %U" \
-0 loglb 5.vcs simv +UVM TESTNAME=testl
cat loglb*.vcs
Example 14- File: doit1b.ves
ves -sverilog -ntb_opts uvm -timescale=1lns/lns -£f runlc.f
/usr/bin/time -f "translc: no rand output - uses field macros - no do_methods () - simulation time %U" \
-o loglc_l.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translc: no rand output - uses field macros - no do_methods() - simulation time %U" \
-o loglc_2.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translc: no rand output - uses field macros - no do methods() - simulation time %U" \
-o loglc_3.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translc: no rand output - uses field macros - no do_methods () - simulation time %U" \
-o loglc_4.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translc: no rand output - uses field macros - no do_methods() - simulation time %U" \
-o loglc_5.vcs simv +UVM TESTNAME=testl
cat loglc*.vcs
Example 15- File: doitlc.ves
ves -sverilog -ntb_opts uvm -timescale=1lns/lns -f runld.f
/usr/bin/time -f "transld: rand output - uses filed macros - no do_methods() - simulation time %U" \
-0 logld 1l.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transld: rand output - uses filed macros - no do_methods() - simulation time %U" \
-o logld 2.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transld: rand output - uses filed macros - no do_methods() - simulation time %U" \
-o logld 3.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transld: rand output - uses filed macros - no do _methods() - simulation time %U" \
-0 logld 4.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transld: rand output - uses filed macros - no do_methods() - simulation time %U" \
-o logld 5.vcs simv +UVM TESTNAME=testl
cat logld*.vcs
Example 16- File: doitld.ves
ves -sverilog -ntb_opts uvm -timescale=1lns/lns -£f runle.f
/usr/bin/time -f "transle: no rand output - do_methods() - no super.do methods() - simulation time %U" \
-o logle l.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transle: no rand output - do methods() - no super.do methods() - simulation time %U" \
-o logle 2.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transle: no rand output - do methods() - no super.do methods() - simulation time %U" \
-o logle 3.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transle: no rand output - do_methods() - no super.do methods() - simulation time %U" \
-o logle_4.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "transle: no rand output - do methods() - no super.do methods() - simulation time %U" \
-o logle 5.vcs simv +UVM TESTNAME=testl
cat logle*.vcs
Example 17- File: doitle.vcs
ves -sverilog -ntb_opts uvm -timescale=lns/lns -f runlf.f
/usr/bin/time -f "translf: no rand output - UVM NOPACK, UVM NOCOMPARE removed UVM ALL ON field macros - simtime %U" \
-0 loglf 1l.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translf: no rand output - UVM NOPACK, UVM NOCOMPARE removed UVM ALL ON field macros - simtime %U" \
-o loglf 2.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translf: no rand output - UVM NOPACK, UVM NOCOMPARE removed UVM ALL ON field macros - simtime %U" \
-0 loglf 3.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translf: no rand output - UVM NOPACK, UVM NOCOMPARE removed UVM ALL ON field macros - simtime %U" \
-0 loglf 4.vcs simv +UVM TESTNAME=testl
/usr/bin/time -f "translf: no rand output - UVM NOPACK, UVM NOCOMPARE removed UVM ALL ON field macros - simtime %U" \
-o loglf 5.vcs simv +UVM TESTNAME=testl
cat loglf*.vcs

Example 18 - File: doit1f.ves

SNUG 2014 63 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The report.ves file concatenates all of the benchmark simulation results into a single file called
ves _benchmark times, and then moves all of the separate benchmark report files into a vesnog
directory, along with a copy of the ves_benchmark times file.

rm -rf vcs benchmark times

cat logl*.vcs > vcs benchmark times
mv logl*.vecs VCSLOG

cp -rp vcs benchmark times VCSLOG

Example 19 - File: report.ves - gathers benchmark simulation times

The script to start the benchmark simulations is the doitall.ves script. This script should be executed
after setting the repeat-loop count value (cNT) in the file: cNT file

doitla.
doitlb.
doitlc.
doitld.
doitle.
doitlf.
report.

ves
ves
vecs
ves
ves
ves
vecs

Example 20 - File: doitall.vcs - execute after setting loop CNT value in the CNT _file file

Each of the transi class examples ~includes a common set of printing methods. Including the
print-methods reduces the code volume for each of the transi class examples.

function string input2string();
return ($sformatf ("g=%2h h=%2h i=%2h j=%2h k=%2h",
g, h, i, jl k));
endfunction

function string output2string() ;
return ($sformatf("a=%2h b=%2h c¢=%2h d=%2h e=%2h",
a, b, c, d, e));
endfunction

function string convert2string();
return ({"Inputs: ", input2string(), " ",
"Outputs: ", output2string()});
endfunction

Example 21 - trans_printing.sv - common printing methods included in each transl class

SNUG 2014 64 UVM Transactions - Definitions,
Rev 1.1

Methods and Usage

The top. sv file is top-module used to run the simulations.

import

tb pkg::

initial run test();
endmodule

“include "uvm macros.svh"
module top;
import uvm pkg::

// import
/

uvm base

classes

/ import testbench classes

Example 22 - File: top.sv - wrapper top-module to permit testing

The test1 loop cNT value used by the test1 class shown in Example 24 is controlled by changing the
CNT (repeat-loop limit) value in the cNT file, which is ~included into the testl.sv file.

| “define CNT 10_000_000

Example 23 - File: CNT_file - holds loop-CNT value

16.2. Benchmark vcs_benchmark_times file

The actual benchmark output file for running the VCS benchmarks with a loop ~cNT = 10 million is
shown below. There are five results for each transi transaction type. This file was generated by
executing the doitall.ves script.

transla: no rand output uses do _methods() - no field macros simulation time 126.07
transla: no rand output uses do_methods() - no field macros simulation time 128.66
transla: no rand output uses do_methods() - no field macros simulation time 125.69
transla: no rand output uses do_methods () - no field macros simulation time 129.05
transla: no rand output uses do _methods() - no field macros simulation time 124.73
translb: rand output uses do_methods() - no field macros simulation time 138.95
translb: rand output uses do_methods() - no field macros simulation time 139.17
translb: rand output uses do methods() - no field macros simulation time 141.62
translb: rand output uses do_methods () - no field macros simulation time 139.50
translb: rand output uses do _methods() - no field macros simulation time 141.79
translc: no rand output uses field macros - no do _methods () simulation time 132.95
translc: no rand output uses field macros - no do methods () simulation time 127.93
translc: no rand output uses field macros - no do methods () simulation time 134.30
translc: no rand output uses field macros - no do methods () simulation time 131.59
translc: no rand output uses field macros - no do _methods () simulation time 135.68
transld: rand output uses filed macros - no do methods () simulation time 144.47
transld: rand output uses filed macros - no do methods () simulation time 151.20
transld: rand output uses filed macros - no do methods () simulation time 145.12
transld: rand output uses filed macros - no do _methods () simulation time 144.39
transld: rand output uses filed macros - no do methods () simulation time 143.90
transle: no rand output do methods () - no super.do methods () simulation time 122.51
transle: no rand output do methods () - no super.do_methods () simulation time 121.24
transle: no rand output do methods () - no super.do_methods () simulation time 119.36
transle: no rand output do_methods () - no super.do methods () simulation time 120.73
transle: no rand output do methods () - no super.do methods () simulation time 120.12
translf: no rand output UVM_NOPACK, UVM NOCOMPARE removed UVM ALL ON field macros simtime 134.00
translf: no rand output UVM_NOPACK, UVM NOCOMPARE removed UVM ALL ON field macros simtime 128.78
translf: no rand output UVM_NOPACK, UVM NOCOMPARE removed UVM ALL ON field macros simtime 130.62
translf: no rand output UVM NOPACK, UVM NOCOMPARE removed UVM ALL ON field macros simtime 133.32
translf: no rand output UVM_NOPACK, UVM NOCOMPARE removed UVM ALL ON field macros simtime 133.64
Figure 58 - ves_benchmark_times report file for a loop CNT=10,000,000
SNUG 2014 65 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

16.3. Benchmark test1 file with repeat-loop

“include "CNT file"

class testl extends uvm test;
“uvm_component utils(testl)
int VECT CNT, PASS CNT, ERROR CNT;
string pstr = "\n\n\n*** TEST PASSED - ";
string estr = "\n\n\n*** TEST FAILED - ";

function new (string name, uvm component parent);
super.new (name, parent);
endfunction

task run phase (uvm phase phase);
transl trl = transl::type id::create("trl");

transl x1 = transl::type id::create("x1");
[/ = e e e e e
phase.raise objection(this);
$display("-------------- \n\n") ;

repeat ("CNT) begin
if (!trl.randomize()) “uvm fatal ("FATALRAND", "trl rand failed");
xl.copy(trl);
“uvm_info("trl", trl.convert2string(),UVM DEBUG) ;
“uvm_info (" x1", xl.convert2string(), UVM_DEBUG) ;
if (xl.compare(trl)) PASS (trl);

else ERROR (trl, x1);
end
$display("\n\n-------------- ") ;
phase.drop objection(this);
endtask

function void report phase(uvm phase phase) ;
if (VECT CNT && !ERROR CNT) “uvm info ("TEST PASSED",
$sformatf ({pstr, "vectors: %04 ran, %0d passed ***\n"},
VECT CNT, PASS CNT), UVM LOW)
else “uvm_error ("TEST FAILED",
$sformatf ({estr, "vectors: %0d ran, %0d passed , %04 failed ***\n"},
VECT CNT, PASS CNT, ERROR_CNT))
endfunction

function void PASS(transl exp tr);
“uvm_info ("PASSMSG",
$sformatf ("Vec#%0d:\n\tPassed: %s",
VECT CNT, exp tr.convert2string()), UVM HIGH)
VECT CNT++;
PASS CNT++;
endfunction

function void ERROR(transl exp tr, out tr);
“uvm_error ("ERRORMSG",
$sformatf ("Vec#%0d:\n\tActual: %s\n\tExpect: %s",
VECT CNT, out tr.convert2string(),
exp tr.convert2string()))
VECT_CNT++;
ERROR_CNT++;
endfunction
endclass

Example 24 - File: testl.sv - randomizes, copies and compares in a repeat(' CNT) loop

SNUG 2014 66 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

The test1 class, shown in Example 24, has a run_phase () that factory-creates two class objects, tr1

and x1, and goes into a repeat loop that randomizes the tr1 variables, copies the tr1 variables to the

x1 variables, and then compares the values of the tr1 variables to the x1 variables. This is a tight loop

that is repeated millions of times to benchmark performance differences related to how the copy () and
compare () methods were created in different transi classes.

transla - non-randomized outputs - do_methods () - no field macros
The transi class defined in the transla.sv file has five non-randomized outputs and five

randomized inputs. The transila.sv example has user-defined do copy () and do_compare ()
methods but no field macro definitions.

class transl extends uvm sequence item;
“uvm_object utils(transl)

bit [7:0] a, b, ¢, d, e; // outputs
rand bit [2:0] g, h, i, j, k; // inputs

function new (string name="transl");
super.new (name) ;
endfunction

function void do copy(uvm object rhs);
transl tr;
if(!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do copy() cast")
super.do_copy (rhs) ;
{a, b, ¢, d, e} = {tr.a, tr.b, tr.c, tr.d, tr.e};
{g, h, i, j, k} = {tr.g, tr.h, tr.i, tr.j, tr.k};
endfunction

function bit do compare(uvm object rhs, uvm comparer comparer) ;
transl tr;

bit eq;

if (!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do compare() cast")
eq = super.do compare(rhs, comparer);

eq &= (a == tr.a); // Compare outputs

eq &= (b == tr.b);

eq &= (c == tr.c);

eq &= (d == tr.d);

eq &= (e == tr.e);

eq &= (g == tr.qg):;
eq &= (h == tr.h);

eq &= (i == tr.i);
eq &= (j == tr.j):;
eq &= (k == tr.k);
return (eq) ;
endfunction

“include "trans printing.sv"
endclass

Example 25 - File: transla.sv - no rand outputs - uses do_methods() - no field macros

SNUG 2014 67 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

trans1b - randomized outputs - do_methods () - no field macros

The transi class defined in the transib.sv file has five randomized outputs and five randomized
inputs. The transib.sv example has user-defined do copy () and do compare () methods but no
field macro definitions.

class transl extends uvm sequence item;
“uvm _object utils(transl)

rand bit [7:0] a, b, ¢, 4, e; // outputs
rand bit [2:0] g, h, i, j, k; // inputs

function new (string name="transl");
super.new (name) ;
endfunction

function void do copy(uvm object rhs) ;
transl tr;
if (!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do copy() cast")
super.do_ copy (rhs) ;
{a, b, ¢, d, e} = {tr.a, tr.b, tr.c, tr.d, tr.e};
{g, h, i, j, k} = {tr.g, tr.h, tr.i, tr.j, tr.k};
endfunction

function bit do compare(uvm object rhs, uvm comparer comparer) ;
transl tr;

bit eq;
if (!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do compare() cast")
eq = super.do compare(rhs, comparer);
eq &= (a == tr.a); // Compare outputs
eq &= (b == tr.b);
eq &= (c == tr.c);
eq &= (d == tr.d);
eq &= (e == tr.e);
eq &= (g == tr.g);
eq &= (h == tr.h);
eq &= (i == tr.i);
eq &= (j == tr.j):
eq &= (k == tr.k);
return (eq) ;
endfunction

“include "trans printing.sv"
endclass

Example 26- File: trans1b.sv - rand outputs - uses do_methods() - no field macros

SNUG 2014 68 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

translc - no randomized outputs - uses field macros - no do_methods ()

The transi class defined in the transic.sv file has five non-randomized outputs and five
randomized inputs. The transilc.sv example has user-defined field macro definitions but no

do _methods ().

class transl extends uvm sequence item;
bit [7:0] a, b, ¢, d, e; // outputs
rand bit [2:0] g, h, i, j, k; // 4inputs

“uvm_object utils begin(transl)
“uvm_field int(a, UVM_ALL_ON)
“uvm_field int(b, UVM _ALL_ON)
“uvm field int(c, UVM ALL ON)
“uvm_field int(d, UVM ALL_ON)
“"uvm_field int(e, UVM_ALL_ON)
“uvm field int(g, UVM ALL ON)
“uvm field int(h, UVM ALL ON)
“uvm field int (i, UVM ALL ON)
“uvm_field int(j, UVM ALL_ON)
“"uvm_field int(k, UVM_ALL_ON)

“uvm _object utils end

function new (string name="transl");
super.new (name) ;

endfunction

“include "trans printing.sv"

endclass
Example 27 - File: translc.sv - no rand outputs - uses field macros - no do_methods()
SNUG 2014 69 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

transld - randomized outputs - uses field macros - no do_methods ()

The transi class defined in the transid.sv file has five randomized outputs and five randomized
inputs. The transid.sv example has user-defined field macro definitions but no do_methods ().

class transl extends uvm sequence item;
rand bit [7:0] a, b, ¢, 4, e; // outputs
rand bit [2:0] g, h, i, j, k; // 4inputs

“uvm _object utils begin(transl)
“"uvm_field int(a, UVM_ALL_ON)
“uvm field int(b, UVM ALL ON)
“uvm field int(c, UVM ALL ON)
“uvm_field int(d, UVM_ALL_ON)
“uvm_field int (e, UVM ALL ON)
“"uvm_field int(g, UVM_ALL_ON)
“uvm field int(h, UVM ALL ON)
“uvm field int (i, UVM ALL ON)
“uvm_field int(j, UVM_ALL_ON)
“uvm field int(k, UVM ALL ON)

“uvm_object utils end

function new (string name="transl");
super.new (name) ;
endfunction

“include "trans printing.sv"
endclass

Example 28- File: transld.sv - rand outputs - uses field macros - no do_methods()

SNUG 2014 70 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

transle - no randomized outputs - do_methods () but no calls to super.do methods ()

The transi class defined in the transie.sv file has five non-randomized outputs and five
randomized inputs. The transle.sv example has user-defined do _copy () and do_compare ()

methods but they do not call super.do copy () or super.do compare () respectively. There are no

field macro definitions used in this example.

class transl extends uvm sequence item;
“uvm_object utils(transl)

bit [7:0] a, b, ¢, 4, e; // outputs
rand bit [2:0] g, h, i, j, k; // 4inputs

function new (string name="transl");
super.new (name) ;
endfunction

function void do copy(uvm object rhs);
transl tr;
if (!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do copy() cast")
{a, b, ¢, d, e} = {tr.a, tr.b, tr.c, tr.d, tr.e};
{g, h, i, j, k} = {tr.g, tr.h, tr.i, tr.j, tr.k};
endfunction

function bit do compare(uvm object rhs, uvm comparer comparer) ;
transl tr;

bit eq;
if (!$cast(tr, rhs)) “uvm fatal("transl", "ILLEGAL do compare() cast")
eq = (a == tr.a); // Compare outputs
eq &= (b == tr.b);
eq &= (c == tr.c);
eq &= (d == tr.d);
eq &= (e == tr.e);
eq &= (g == tr.qg);
eq &= (h == tr.h);
eq &= (i == tr.i);
eq &= (j == tr.j);
eq &= (k == tr.k);
return (eq) ;
endfunction

“include "trans printing.sv"
endclass

Example 29 - File: transle.sv - no rand outputs - uses do_methods() - no super.do_methods()

SNUG 2014 71 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

16.4. trans1f - randomized outputs - uses field macros - no UVM_ALL_ON flags

The transi class defined in the transif.sv file has five non-randomized outputs and five
randomized inputs. The transif.sv example has user-defined field macro definitions but omits the
uvM ALL ON flags and replaces them with uvM NOPACK or UVM_NOCOMPARE, which automatically turn
on the uvM ALL ON settings. There are no do_methods () in this example.

class transl extends uvm sequence item;
bit [7:0] a, b, ¢, 4, e; // outputs
rand bit [2:0] g, h, i, j, k; // inputs

“uvm object utils begin(transl)
“uvm field int(a, UVM NOPACK) // Same as UMV ALL ON | UVM NOPACK
“uvm_field int(b, UVM_ NOPACK) // Turns on UVM COPY & UVM COMPARE
“"uvm_field int(c, UVM_NOPACK)
“uvm field int(d, UVM NOPACK)
“uvm field int(e, UVM NOPACK)
“uvm field int(g, UVM NOCOMPARE) // Same as UVM ALL ON | UVM NOCOMPARE
“uvm_field int(h, UVM_NOCOMPARE) // UVM_COPY does not work
“uvm field int (i, UVM NOCOMPARE)
“uvm_field_int(j, UVM_NOCOMPARE)
“uvm field int(k, UVM_ NOCOMPARE)
“uvm _object utils end

function new (string name="transl");
super.new (name) ;
endfunction

“include "trans printing.sv"
endclass

Example 30 - File: trans1f.sv - no rand outputs - uses field macros - no UVM_ALL_ON flags

SNUG 2014 72 UVM Transactions - Definitions,
Rev 1.1 Methods and Usage

