

 Paradigm Works Inc.
 Proprietary and Confidential

 Paradigm Works® Scoreboard™
 Application Note

 Revision 2.1

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 2 of 14
 Proprietary and Confidential

Table of Contents
1 Overview ... 4
2 PW Scoreboard™ Use Model ... 5
3 Multi-stream Posting and Checking ... 6
4 Synchronization .. 8
5 Fragmented Payloads .. 8
6 Reporting and Statistics .. 8
7 Advanced Transfer Functions ... 9
8 Procedural vs. TLM Interfaces .. 10
9 Example .. 10
9.1 Advanced Usage Example: Posting Scoreboard Data with Timeout Events 12
9.2 Advanced Usage Example: Posting and Checking with Support for Dropping Packets 13
10 Summary ... 14
11 Company Background .. 14

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 3 of 14
 Proprietary and Confidential

List of Figures

Figure 2-1: Simple Scoreboard Use Model .. 5
Figure 2-2: Advanced Scoreboard Use Model ... 6
Figure 3-1: Multi-stream Posting and Checking .. 7
Figure 4-1: Synchronization Mechanism .. 8
Figure 7-1: Predictor and Checker Function .. 9
Figure 9-1: Hooking Up the Scoreboard Components .. 11
Figure 9-2: Example of a Typical Scoreboard Hook-up .. 12
Figure 9-3: Default Transfer Function .. 12
Figure 9-4: Generation Failure on Matching Timeout ... 13
Figure 9-5: Implementing Packet Drop ... 14

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 4 of 14
 Proprietary and Confidential

1 Overview
Scoreboarding is a fairly straightforward concept used in functional verification environments. Simply put,
when an event of interest is anticipated by the verification environment, details of that event are posted to the
scoreboard. Conversely, when an event of interest is actually observed, it is checked against the events already
posted on the scoreboard. The mapping of the posted to the checked events is called the transfer function,
which can range from the fairly straightforward to the fairly complex. For example, for every posted event,
there may be multiple events that are checked and vice versa.

 A verification project typically requires the following features from its scoreboarding implementation:

• In-order and out-of-order checking

• Timeout checking

• Hooks for error handling

• Support for complex transfer functions

• Synchronization

Interestingly, the SystemVerilog industry and specifically the recently announced UVM 1.0 release[1] does not
yet provide a generic implementation of a scoreboard that supports these features. While there is a base class
called uvm_scoreboard, it is left up to the user to implement its entire functionality. Users will thus end up
creating home-grown versions of the scoreboard, and Paradigm Works feels a generic scoreboarding class
implementation is in order.

To address this need, Paradigm Works has developed the Paradigm Works® Scoreboard™ (PW Scoreboard™).
The Scoreboard is implemented in SystemVerilog and supports many of the features required of a typical
scoreboard.

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 5 of 14
 Proprietary and Confidential

2 PW Scoreboard™ Use Model
In this section, we present two typical use models of the PW Scoreboard™: a simple and an advanced use
scenario. These are generic scenarios and can be customized to any extent depending on the needs of the
project.

Figure 2-1 illustrates a simple use scenario, where an instance of the PW Scoreboard™ can be pretty much
dropped into an existing environment. The PW Scoreboard™ in Figure 2 is an instance of pw_scoreboard class
and is derived from the uvm_scoreboard class. The uvm_scoreboard is an empty built-in base component in
UVM library. Transactions are posted to the scoreboard as instances of classes derived from the
uvm_transaction class. Similarly, transactions are checked by passing instances of classes derived from
uvm_transaction to the scoreboard. The actual comparison takes place by calling the uvm_compare method of
the posted object with the instance of the checked object as an argument.

In the simple use model, the transactions are being sent from the driver, and expected to be transmitted as
driven in a simple in-order fashion through the Design Under Verification (DUV). A monitor sits on the
stimulus side, and publishes observed stimulus to its analysis port. The analysis port is connected to the
scoreboard and the expected values get posts whenever a transaction is observed. For its counterpart, another
monitor sits on the response side, which publishes the observed transactions. When a DUV response is
published by this monitor, it gets checked against the posted values in order.

Figure 2-1: Simple Scoreboard Use Model

 DUV responder

stimulus
monitor

response
monitor

driver

 PW Scoreboard™

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 6 of 14
 Proprietary and Confidential

Figure 2-2 shows an advanced use model of the PW Scoreboard™. Here, the mapping between the posted
stimulus to the expected response is not so straightforward and requires some manipulation of both the
stimulus and the response data to infer the actual data being checked.

As an example, consider a packet driver that sends in a sequence of packet fragments. The predictor collects
the fragments being sent and posts the complete packet data to the scoreboard once it has seen the end of the
packet. On the other side, the response monitor sees the outgoing fragments and sends them to the checker.
When the checker finally assembles the entire packet, it sends it to the scoreboard for comparison. However,
the checker also gets the input from the error monitor and marks whether an error occurred so that the
affected data can be compared appropriately with the posted value. This approach of separating the prediction
and checking transfer functions in a separate component offers a powerful and generic methodology for
scoreboarding. The details of the predictor and checker are described later in Chapter 4.

Figure 2-2: Advanced Scoreboard Use Model

3 Multi-stream Posting and Checking
Self-checking verification environments often need to support the notion of streams. Each stream identifies a
sequence of transactions that should appear at the checking end in the same order as they are posted.
However, ordering between events does not matter between events in independent streams. For example, data
being set from a host to two bulk endpoints may be independent of each other; the host application may not
care if one of the endpoints gets some of its transactions before the other. Also, depending on the DUT, the
number of streams concurrently active can be fixed or can change dynamically.

The PW Scoreboard™ supports the notion of an arbitrary number of streams (Figure 3-1) that can appear
dynamically. In-order checking is accomplished by posting objects to the same stream. Out-of-order checking is
accomplished by posting objects to different streams. Each stream is identified by a unique number, and objects
posted to a given stream are expected to be checked in the same order as they are posted. There is no implied
order between objects posted in different streams. Thus, objects can appear in any order with respect to each
other if they are posted in separate streams.

Predictor
(pw_predictor_check
er)

Checker
(pw_predictor_check

)

 PW Scoreboard™

 DUV responder

stimulus
monitor

response
monitor

pkt driver

pkt Error
monitor

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 7 of 14
 Proprietary and Confidential

Figure 3-1: Multi-stream Posting and Checking

……

……

……..

post

post check

check

stream0

stream n

data 0i+1 data 0i data 00

data n0 data nj data nj+1

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 8 of 14
 Proprietary and Confidential

4 Synchronization
Some applications come up with data that is expected to potentially contain mismatches after reset or after a
dynamic reset or some other expected catastrophic event that may occur in your simulation run. The
synchronization mechanism allows for the PW Scoreboard™ to handle this type of behavior. The
synchronization mechanism is completely optional based on the needs of the testbench.

The synchronization mechanism allows users to setup an OUT OF SYNC window where potential mismatches
will not generate errors. Users have complete control over setting up the "maximum number mismatches
transactions" and defining the criteria for setting up the "number consecutive matched transactions" which
transitions the scoreboard from OUT OF SYNC state to SYNC state. Additionally, the synchronization
mechanism is configurable to operate on single streams or across multiple streams.

Below is a simple example of using the synchronization mechanism. The "maximum number mismatches
transactions" is setup with a value of two and the "number consecutive match transactions" is setup with a
value of one. In this example, the first two transactions ("data 0" and "data 1") enter onto the scoreboard and
happen to have mismatches but errors are not reported because the scoreboard is in OUT OF SYNC state.
Next, transaction "data 2" enters into the scoreboard without a mismatch and meets the criteria for transition
the scoreboard's synchronization mechanism to switch to IN SYNC state. From this point forward all
transaction data is checked and mismatches will result as errors.

.

5 Fragmented Payloads

Some applications require predicting and checking data payloads that may include fragmentation as well as
the scoreboard checking operation that may occur before the posting operations. The PW Scoreboard™
includes capabilities to handle this type of functionality.

For example, a testbench may be driving stimulus into a DUT's slave interface and at the same time the DUT
is sending out fragments of the payload on its master interface. The payload data that is driven into the design
is sent to the "expected" side of the scoreboard while the "actual" data begin sent out of the DUT is sent to the
"checked" side of the scoreboard. The scenario above would result in a scoreboard reporting errors under
normal circumstances. However, the PW Scoreboard™ includes configuration controls to operate with both
"fragmented payloads" and "checks before posts".

6 Reporting and Statistics
The PW Scoreboard™ generates error messages when mismatches occur. In addition, it also provides methods
to report the activity statistics of the scoreboard. For example, it can report how many events have been posted
or checked so far, or how many events are left unmatched. These statistics are available at any time during the
test execution, and an error can be generated at the end of a test if elements remain unmatched.

check
data 1 data 2 data 0

OUT OF SYNC WINDOW

data 3 data 4

IN SYNC

…

Mismatch! Mismatch!

Figure 4-1: Synchronization Mechanism

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 9 of 14
 Proprietary and Confidential

7 Advanced Transfer Functions
When data is transmitted from one interface to a different kind of interface, a complex transfer function may
be required to represent the relationship between one data type to another data type. Although the transfer
function will be very much design specific, it can still be done in a consistent and systematic manner. By
providing hooks to allow design specific transfer functions, the scoreboard can be highly reusable.

PW Scoreboard™ provides a pw_predictor_checker class to handle various transfer function(s) between data
being transmitted and data being received. The pw_predictor_checker class allows a user-defined
transformation of data to take place in a testbench component that is distinct from and feeds the
pw_scoreboard. This allows the application specific complex transfer logic to be encapsulated separately from
the generic scoreboarding functions.

Figure 7-1 respectively illustrates how the predictor and checker objects implement complex transfer functions.
The predictor object may receive stimulus data from multiple sources using its exports. Depending on the
application need, it then infers the appropriate data and posts it to any of the connected scoreboard instances
as needed. On the other hand, the checker object, analogously, receives observed response data from multiple
sources through its exports, and then, as the application dictates, forwards the inferred response data to the
appropriate scoreboard for checking.

Figure 7-1: Predictor and Checker Function

pw_scoreboard A

Predictor

pw_scoreboard B

F(x)

Transfer Function

Multiple inputs using export
Post to multiple scoreboards

Multiple inputs using export

Checker

pw_scoreboard A

pw_scoreboard B

F(x)

Check against multiple scoreboards

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 10 of 14
 Proprietary and Confidential

8 Procedural vs. TLM Interfaces
TLM ports are the recommended way to communicate between components in a verification environment.
Using TLM ports promotes better reuse of the components since it decouples the functionality of the
component from how it communicates with others. Thus the same functionality can be easily ported across
multiple environments as long as TLM is used as the basic mechanism for communication. The PW
Scoreboard™ supports TLM based communication between the scoreboard and any other components in the
verification environment.

However, in certain cases, it may be necessary to access the scoreboard directly without going through the
TLM ports/exports. A typical example is the case where events are posted or checked using callbacks. The PW
Scoreboard™ provides post_sb_data() and check_sb_data() for such purposes. These methods can be called
procedurally in the testbench. Although we provide these procedural methods for flexibility, we recommend
that users utilize TLM interfaces in order to promote code reuse.

9 Example
Figure 9-1 shows the basic steps in hooking up the scoreboard for a typical example as shown in Figure 9-2. In
this example, two pw_predictor_checker class instances are created. The instance connected to the monitor at the input side (left)
of the DUT works as the predictor. The predictor is responsible for converting the input data type to the expected output data
type. The instance connected to the monitor at the output side (right) of the DUT works as the checker. The checker is responsible
for comparing the observed output data with the expected data on the scoreboard. The predictor connects to the pw_scoreboard’s
post_export and the checker connects to the check_export of the scoreboard.

The pw_predictor_checker class provides a built-in virtual method transfer() to handle different input and
output data type. By default, input and output data type of the transfer() method are the same. The code
snippet above shows the default transfer() method. Actual transfer functions may be quite complex and
dependent upon mirrored images of DUT state and multiple modes or configurations.

Finally, at the end of the test, statistics such as the number of posted and checked events are reported. If any
unmatched events are found, an error is generated. As expected, the example above shows scoreboard
reporting method is called in the report() phase of the simulation.

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 11 of 14
 Proprietary and Confidential

Figure 9-1: Hooking Up the Scoreboard Components

// The following shows how the base scoreboard related classes can be hooked up in a UVM testbench
class xbus_demo_env extends uvm_env;

 // Declare a scoreboard. Both input and output data are of type xbus_transfer
 pw_scoreboard #(xbus_transfer, xbus_transfer) pw_sb;

 // Declare a predictor. Number of input ports is ‘1’, number of output ports is ‘1’.
 // Input and output data types are both xbus_transfer
 pw_predictor_checker #(1,1,xbus_transfer,xbus_transfer) pw_predictor;
 // Declare a checker. Number of input ports is ‘1’, number of output ports is ‘1’.
 // Input and output data types are both xbus_transfer
 pw_predictor_checker #(1,1,xbus_transfer,xbus_transfer) pw_checker;
 …
 virtual function void build();
 super.build();
 ….
 // Instantiate the scoreboard
 pw_sb = pw_scoreboard #(xbus_transfer,xbus_transfer)::type_id::create(“pw_sb”,this);

// Instantiate the predictor and checker component
pw_predictor= pw_predictor_checker #(1,1,xbus_transfer,xbus_transfer)
 ::type_id::create(“pw_predictor”,this);

 pw_checker= pw_predictor_checker#(1,1,xbus_transfer,xbus_transfer)
 ::type_id::create(“pw_checker”,this);
 endfunction

function void connect();
 …
 // Connect the prediction side monitor to predictor
 xbus0.master[0].monitor.item_collected_port.connect(pw_predictor.inp_exports[0]);
 // Connect the checking side monitor to checker
 xbus0.slaves[0].monitor.pw_item_collected_port.connect(pw_checker.inp_exports[0]);
 // Connect the predictor and checker to the scoreboard
 pw_checker.sb_aports[0].connect(pw_sb.post_export);
 pw_predictor.sb_aports[0].connect(pw_sb.check_export);

endfunction
 function void report();
 …
 // Report any outstanding entries
 pw_sb.report_sb(
 1, // Checks outstanding elements and errors if any
 1 // Prints out outstanding elements;
);

endfunction
endclass

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 12 of 14
 Proprietary and Confidential

Figure 9-2: Example of a Typical Scoreboard Hook-up

9.1 Advanced Usage Example: Posting Scoreboard Data with Timeout Events

Figure 9-4 shows the user can set up timeout events associated with the posting of transactions to
post_sb_data(). The basic approach is to define an uvm_event that gets triggered upon timeout. If a posted
event is not matched before the event gets triggered, the scoreboard reports a timeout error.

The code snippet shows how the monitor creates an uvm_event via new and posts it to the scoreboard. This
event is associated solely with the specific transaction being posted. Thus, each posted element can have its
own timeout, if needed. In this example, if the packet is not matched or unintentionally dropped before 300
time units expire, the scoreboard will report an error similar to this:
UVM_ERROR @ 1108: uvm_test_top.pwr_demo_sve0.pw_sb[0] [] Timed out on event : for
transaction:a:1 p:2 r:10 l: 10 [16_b9_74_64_fc_cc_c9_b3_b4_fc] parity : 0x1e

Figure 9-3: Default Transfer Function

 DUT

monitor

driver

predictor

 PW Scoreboard™ checker

monitor

responder

// Transfer function that processes the arrived transaction. Also specifies the port id at which it arrived
virtual task transfer(T_INP trans, int port_id);
 uvm_report_message("pw_predictor_checker", $psprintf("SB: transfer: %d\n", port_id));
 // Implement specific transfer logic

 // Push it to the SB
 uvm_report_message("pw_predictor_checker:", $psprintf("%d porti_id", port_id));
 sb_aports[port_id % NUM_SB].write(trans);
endtask // transfer

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 13 of 14
 Proprietary and Confidential

Figure 9-4: Generation Failure on Matching Timeout

9.2 Advanced Usage Example: Posting and Checking with Support for Dropping Packets

In many networking applications, some amount of packet losses is tolerated. For example, under heavy load
conditions, some packets may be dropped due to buffer overruns, as long as they are dropped within specified
limits and depending on traffic and other parameters. These scenarios are quite hard to verify, since it is hard
to predict which packets can be allowed to be dropped and when it is allowable. The alternative to use directed
tests is often sub-optimal, since one may miss a lot of corner cases that may be exposed under such heavy
traffic.

Some of the typical techniques to address packet dropping used by engineers are:

a. Marking individual posted packets as droppable and add additional checking logic to ignore such packet

b. Specifying a window and a limit of droppable packets. The checking logic allows some degree of mismatch
to occur within certain window of time.

c. Checking the state of the DUT at the precise time when the event is observed and infer if the expected
packet was likely to be dropped and the observed packet may be something else that follows.

The following example shows how one can use c. above. By inheriting from the class pw_scoreboard, user code
can override the get_canDrop() method to determine whether a sb_entry is droppable at the time it is checked.

class xbus_pw_scoreboard #(type T_POSTED=uvm_transaction,
 type T_CHECKED=uvm_transaction)
 extends pw_scoreboard #(T_POSTED, T_CHECKED);

 // This function returns a event that triggers a timeout event. The scoreboard will
 // generate an error if tjis event is triggered before a match is found
 virtual function uvm_event get_timeout(uvm_transaction posted);
 uvm_event xbus_to_ev;
 xbus_to_ev = new("XBUS_PW_TO");
 fork
 #300;
 xbus_to_ev.trigger();
 join _none
 endfunction
endclass

Application Note Paradigm Works® Scoreboard™

Revision 2.1 Paradigm Works Inc. Page 14 of 14
 Proprietary and Confidential

Figure 9-5: Implementing Packet Drop

10 Summary & Download

The PW Scoreboard™ is a useful package for the practicing verification engineer. It supports the scoreboarding
needs of a typical verification project, can be easily extended, and can be quickly integrated into a new or an
existing UVM environment.

Users can download the PW Scoreboard™ at: http://paradigm-works.com/paradigm-works-scoreboard/

11 Company Background

Paradigm Works is a leading chip design and verification services company. The company is recognized for
engineering excellence, integrity in business, and overall productivity and cost effectiveness.

We provide expert consultants and contractors both on site and offshore to assist in complex chip
developments. We offer world class domain expertise (PCI Express, USB, Ethernet), application knowledge
(Networking, Computing, Storage, Wireless), and leverage Paradigm Works suite of productivity accelerator
software (VerificationWorks™ and ReleaseWorks®) to help clients bring their innovations to market as quickly
as possible.

For more information on Paradigm Works products and services call 978-824-1400 or see our web site at
www.paradigm-works.com.

class acme_pw_scoreboard extends pw_scoreboard;
 `uvm_component_utils_begin(acme_pw_scoreboard)
 …
 // Allow packets to be dropped before 200ns of simulation time
 virtual function int get_canDrop(uvm_transaction posted);
 if ($time < 200ns) begin
 uvm_report_info("", "In overloaded get_canDrop, about to return 1.");
 return 1;
 end else begin
 uvm_report_info("", "In overloaded get_canDrop, about to return 0.");
 return 0;
 end
 endfunction
endclass : acme_pw_scoreboard

http://paradigm-works.com/paradigm-works-scoreboard/

	1 Overview
	2 PW Scoreboard™ Use Model
	3 Multi-stream Posting and Checking
	4 Synchronization
	5 Fragmented Payloads
	6 Reporting and Statistics
	7 Advanced Transfer Functions
	8 Procedural vs. TLM Interfaces
	9 Example
	9.1 Advanced Usage Example: Posting Scoreboard Data with Timeout Events
	9.2 Advanced Usage Example: Posting and Checking with Support for Dropping Packets

	10 Summary & Download
	11 Company Background

